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Abstract

Understanding the broad impact of science and science funding is critical to ensuring that science
investments and policies align with societal needs. Existing research links science funding to the output
of scientific publications but largely leaves out the downstream uses of science and the myriad ways
in which investing in science may impact human society. As funders seek to allocate scarce funding
resources across a complex research landscape, there is an urgent need for informative and transparent
tools that allow for comprehensive assessments and visualization of the impact of funding. Here we
present Funding the Frontier (FtF), a visual analysis system for researchers, funders, policymakers,
university leaders, and the broad public to analyze multidimensional impacts of funding and make
informed decisions regarding research investments and opportunities. The system is built on a massive
data collection that connects 7M research grants to 140M scientific publications, 160M patents, 10.9M
policy documents, 800K clinical trials, and 5.8M newsfeeds, with 1.8B citation linkages among these
entities, systematically linking science funding to its downstream impacts. As such, Funding the Frontier
is distinguished by its multifaceted impact analysis framework. The system incorporates diverse impact
metrics and predictive models that forecast future investment opportunities into an array of coordinated
views, allowing for easy exploration of funding and its outcomes. We evaluate the effectiveness and
usability of the system using case studies and expert interviews. Feedback suggests that our system not
only fulfills the primary analysis needs of its target users, but the rich datasets of the complex science
ecosystem and the proposed analysis framework also open new avenues for both visualization and the
science of science research.
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1 INTRODUCTION

Scientific progress is crucial to human well-being and prosperity. Advances in science have improved
global health [1–3], driven innovation and economic growth [4, 5], and informed policy decisions [6, 7].
From mRNA vaccines to the Internet, scientific progress improves quality of life and standards of living,
widely seen as a vital public good [8–10]. Essential drivers of scientific progress are funding and public
support. Vannevar Bush highlighted this connection in his landmark 1945 report, “Science, The Endless
Frontier,” advocating for federal investment in scientific research as “the fund from which the practical
applications of knowledge must be drawn” [8]. This report led to the creation of the National Science
Foundation (NSF) in 1950 and established the basis for modern science policy.

While there is now growing evidence of the strong relationship between science funding, basic science,
and its societal impact at a high level [10, 11], a holistic and systematic approach to evaluating the broad
outcomes of specific funding decisions remains scarce. Given the growing importance of science funding,
the ability to evaluate the multidimensional impacts of this funding is critical to ensure that science policies
and investments align with social needs and to maintain public trust in scientific endeavors [12]. These
evaluations are of immense interest to a diverse array of stakeholders, including funding agencies seeking
effective science investment strategies, national policymakers pursuing opportunities to enhance national
competitiveness through science and technology policies, university leaders planning strategic initiatives,
and individual scientists formulating impactful research programs. However, the analysis required for this
work is complex and challenging due to both the multifaceted nature of funding outcomes and the extended
time period that passes between the initiation of projects and their potential societal impact.

Much research has emphasized the importance of science funding [13–15]. Yet, the bulk of existing
research concentrates on grants and their resulting scientific publications, which evaluate the impact of
funding within science, while ignoring other facets of the impacts. Emerging efforts examine the impacts of
scientific research more broadly, but they rarely trace these outcomes back to their funding sources [1,4,7,16].
The visualization community has also long been interested in studying science funding, using, for example,
grant data for topic mining and principal investigator (PI) network visualization [17, 18], yet it, too, has
largely overlooked the broad impact of funding. As a result, there is a notable lack of quantitative analyses
and accessible analytical approaches that science decision-makers can utilize effectively, as well as a
substantial gap in our understanding of the full landscape of the influence of funding on science and society.

In recent years, extensive new datasets have emerged that capture not only the inner workings of the
scientific enterprise in detail and at scale, including funding [19] and scientific outputs, but also trace the
numerous ways in which science interfaces with the broader human society, ranging from healthcare [20] to
government policies [21] to marketplace applications [22] to public perceptions [23], representing science
as an interconnected ecosystem (Fig. 1). To truly unleash the potential of these datasets and to maximize the
impact of science on society, however, we need new toolkits to analyze and understand the information that
is now available to us. Here we present Funding the Frontier (FtF), a new visualization tool that combines
the latest advances across two fields—the science of science (SciSci) [15, 24] and visual analytics [25].
Indeed, SciSci methods enable us to link various data sources to create a holistic and systematic approach
to assessing and predicting the broad impact of funding, and visual analytics solutions empower us to
deliver accessible insights to policymakers and institutional leaders directly. Overall, the system builds on a
massive data collection that connects 7M research grants to 140M scientific publications, 160M patents,
10.9M policy documents, 800K clinical trials, and 5.8M newsfeeds, with 1.8B citation linkages among these
entities, representing to our knowledge the largest and most comprehensive data aggregation of science
funding and its downstream impacts. By assessing the broad impact of science and science funding, the
system allows for more targeted investments, an improved ability to relieve roadblocks in the scientific
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process, and, overall, a greater impact of science on society.
There are several challenges involved in designing such a system. First, impact assessment requires

rational definitions and accessible metrics for evaluating the multidimensional impacts of funding on
society [12]. These measures need to capture the wide range of potential outcomes of scientific research,
while being straightforward and comprehensible to decision-makers who often lack technical backgrounds.
Second, the diversity and volume of the data create a need for especially innovative visualization solutions
to allow for effective exploration. The data not only cover a wide range, from grant information to
scientific outcomes and their downstream impacts, but also introduce a high level of complexity, as they
are characterized by heterogeneous citation networks, multidimensional variables, hierarchical topics, and
temporal dynamics. Third, a system that can offer meaningful investment recommendations and guide
future investment strategies requires a predictive engine that can analyze the massive amount of historical
data on funding and its outcomes and suggest high-impact opportunities.

We began to tackle these challenges by interviewing multiple experts, including both decision-makers
and active researchers, to characterize the domain problem. We then defined a set of measures to quantify the
impact of funding from multiple dimensions and developed a prediction model to identify grant topics and
research investigators with high potential to produce substantial impacts in the future. Using these historical
data and prediction results, we designed and developed Funding the Frontier (FtF), a comprehensive visual
analysis system that presents, analyzes, and predicts the multi-faceted impacts of science and science
funding for a wide range of decision-makers in science, including funders, policymakers, university leaders,
and more. The contributions of this work are summarized as follows:
• We characterize the problem domain of visual analytics for funding impact and propose a list of impact

measures.

• We develop FtF, a comprehensive visual analysis system with novel designs and effective interac-
tions to explore multi-dimensional funding impact. The system is available through the website:
https://fundingthefrontier.com.

• We conduct an exploratory evaluation of the effectiveness and usability of the new system, including a
quantitative study, two case studies, and expert interviews.

2 RELATED WORK

Related literature spans three domains, including the science of science, funding data visualization, and
network visualization.

2.1 The Science of Science

The SciSci community has long been interested in studying science funding and its outcomes. The early
literature mainly focuses on the funding data itself, without considering its outcomes, revealing for example
the racial and gender bias in grant applications [26, 27]. To the extent that funding outcomes are examined,
the bulk of research has focused on the impact of funding within science itself, studying for instance how
funding correlates with the amount and impact of papers that result [9, 28–31], or the impact of grants on
subsequent career outcomes in science [9, 32, 33].

Separately, there is another line of inquiry that aims at quantifying the broad impacts of science.
While these studies help us better understand how science interfaces with various aspects of human
society, including marketplace applications [4], public perception [16, 23], clinical trials [1–3], and policy-
making [6, 7, 10] (Fig. 1), they do not trace the science back to its upstream funding, highlighting the
empirical gap linking funding to its broad impacts.
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Figure 1: The science ecosystem, from the upstream funding to the science to the broader downstream
impact. The direct outcomes of funding include scientific publications, patents, and clinical trials (solid dark
yellow arrows), while the broader impacts emerge through the influence of funded papers on the broader
society, such as public policy (dashed shallow yellow arrows).

More recently, there have been some initial attempts at linking funding to its broad impacts, which
substantially inform our work. For example, Yin et al. consider the broad impacts of public funding
by examining three types of public uses of science (i.e., policy, news media, and patents) [10]. Other
studies link government funding to resulting patents, highlighting the impact of funding on marketplace
applications [5, 34]. While these papers rely on datasets that are more limited in scope, scale, and detail,
compared with our datasets, they are similar to our work in that they address the relationship between
funding and its broad impact. More importantly, while these studies are descriptive by nature, the policy
relevance of the insights derived from these studies highlights the need for a visual analytical approach to
understanding the broad impact of the funding, which is the focus of the present paper. Indeed, the key
differentiation is that these existing studies are descriptive by nature, and do not allow decision-makers,
such as program officers at funding agencies, to explore the data or draw insights. To the best of our
knowledge, the visual analytics system we propose here is the first user-oriented, interactive system for
science decision-makers to analyze and visualize the multidimensional impacts of funding.

2.2 Scientific and Funding Data Visualization

The visualization community has widely used and analyzed scientific data on papers, patents, and grants. Pre-
vious literature mainly falls into two categories: (1) technique-centered work and (2) insight-centered work.
Using the complex data structure of scientific data, which includes network [35,36], time-series [37,38], and
multivariate [39] datasets, technique-centered studies often use these data to propose general visualization
techniques. Insight-based studies, by contrast, either use comprehensive visualization systems [40–43] or
are based on datasets that are developed to distill insights about the development of the visualization and
HCI community itself [44–47].

More specifically, a number of studies have focused on science funding data. For example, DIA2 [48]
visualizes the NSF funding portfolio. Liu et al. [49, 50] proposed a 2.5D treemap to visualize funding
distributions. Scholar Plot [51] visualizes researchers’ publication and funding data. The Public Innovations
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Explorer [52] visualizes funding from federal agencies and small businesses across the US to explore
innovative geolocations. The EnArgus system [53] provides semantic search functions for grant abstract
data to focus on energy-related projects. And there are online platforms, including NIH RePORTER [54,55],
Altmetric [23], PlumX Metrics [56], and Dimensions [19], which serve primarily as search engines that
show grants-related meta-information and their outputs. Moreover, grant data have also been used to inform
general visualization challenges, such as graph visualization using multidimensional grant metadata [57,58]
and topic modeling and evolution using grant abstract [18, 59]. Related, there is a body of visualization
work that analyzes funding outcomes in science [17, 60, 61].

On one hand, these studies and systems highlight the importance of studying the impact of funding,
but they have mainly focused on the impact within science, largely ignoring the impacts of funding on the
broader human society. On the other hand, systems such as MedChemLens [62] and InnovationInsights [63]
explore the interaction between science and its broader impact, including patents and medicine, but they
do not consider upstream funding. By contrast, our work characterizes the domain problem of analyzing
funding impact and aggregates multiple data sources to develop a first-of-its-kind visualization system that
evaluates the broad outcomes of funding portfolios, especially those that go beyond science.

2.3 Network Visualization

Network visualization represents a broad area of study, covering a range of different network types, such as
multi-variate [64], group [65], dynamic [66], and multi-layer networks [67]. Here we introduce studies that
are most relevant to ours.

The data in the scientific ecosystem can be depicted as a large-scale heterogeneous network comprising
various node types (e.g., grants, papers, and researchers) and links (e.g., paper-authorship and grant-paper
citations). For large-scale networks, strategies such as aggregation and graph sampling are commonly
employed to manage visual complexity, often supplemented with interactions like filtering and zooming.
Compound graphs [66] serve to group nodes into categories based on user-defined attributes or clustering
methods. For example, OnionGraph [68] aggregates paper nodes into groups based on their citation range.
FtF also uses node aggregation to present the funding impact at the field level.

When it comes to visualizing networks that include multiple node types, there are broadly four main ap-
proaches to visually differentiating node types within a network: embedding, superimposition, juxtaposition,
and the use of visual node attributes [65]. To further convey hierarchy within a node type, contour overlays
(e.g., circular treemaps [69]) have been shown to be intuitive and effective. However, these approaches often
impose uniform data structures on each node type, which may neglect the diversity and the relationships
across different node types. In FtF, we adopt a hybrid approach that combines node-link diagrams with
hierarchical structures and glyph techniques, which is tailored for assessing the multi-dimensional impacts
of funding.

3 SYSTEM OVERVIEW

This section presents the analysis requirements and a system overview.

3.1 Analysis Tasks

Conversations with diverse stakeholders in the past few years underscored the urgent need to evaluate the
impact of funding to enhance decision-making processes, such as funders’ investment strategies. These
stakeholders included directors and program officers in private and public funding agencies, leaders at top
universities, policymakers, and SciSci researchers. We identified key challenges these decision-makers face,
including the absence of comprehensive data on funded programs and their wide-ranging impacts, the lack
of systematic approaches to measuring the impact of funding, and the scarcity of user-friendly tools for
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those who lack specialized data analysis skills. These discussions highlighted the need for a visual analytics
system capable of providing an intuitive, systematic, and efficient approach to evaluating the impacts of
funding in order to enhance decision-making.

We began to address this challenge over the past few years, engaging with experts from various sectors.
Our experts included a U.S. federal funding agency program officer with over eight years of experience (EA),
a director-level executive in a top private investment firm that specializes in investing in science (EB), as
well as experts in the SciSci field (EC-EE). EC is an established SciSci professor and ED is a professor who
works on statistical analysis of funding data. EE is a researcher focusing on science and innovation. We also
gathered requirements and feedback from data analysis teams at the National Science Foundation (NSF)
and the National Institutes of Health (NIH). Based on conversations with decision-makers, discussions
with domain experts, and a comprehensive literature review, we leverage the expert-focused design study
methodology [70] to identify the six analysis tasks listed below.

Tasks for Project Summarization (S). Profiles of funded projects offer a strategic entry point for
analysis, enabling users to examine the investments and adjust strategies accordingly. Therefore, the system
should provide both overview and detailed information about the funded projects and support a flexible
information exploration approach.

S1: Dynamic Data Selection. The system should enable users to dynamically filter grants by various
attributes, such as funding agencies and grant years, to tailor their analysis.

S2: Funding Overview Illustration. The system should provide a summary of funded fields to assist
analysts in selecting fields of interest for detailed analysis.

S3: Researcher and Institution Characterization. The system should also characterize (1) the funded
researchers (i.e., principal investigator (PI)), in terms of demographics and SciSci measures of
research ability, and (2) recipient research institutions. This information supports diversity, equity,
and inclusion (DEI) by highlighting the funding distribution among researchers and institutions and
identifying PIs and institutions with potential for future investment.

Tasks for Impact Evaluation (E). Another key analysis requirement is the ability to assess the impact
of funded projects. As funding agencies have a wide range of missions and investment strategies, the
criteria for “success” in different funding portfolios can vary significantly. The analysis should, therefore,
present the impact of funding from a multidimensional perspective and provide context to aid users in
understanding these outcomes.
E1: Analysis of funding impacts. The system should offer a comprehensive set of easy-to-understand

metrics to help analysts evaluate and select the type of impact they value most—ranging from direct
scientific impacts to broader societal benefits. Intuitive visualizations and interactions should be
integrated to present more detail regarding the impact, which is based on the citation relationships
between grants and their outcomes (e.g., papers).

E2: Contextualization of funding impacts. To deepen users’ understanding of funding outcomes and
enrich the insights from the analysis, the system should go beyond citation relationships to incorporate
relevant contextual data, including detailed information about the attributes of specific outcomes,
such as the drugs that result from clinical trials or the assignees of the patents.

Tasks for Investment Recommendation (R). The ultimate aim of these evaluations of the impact of
funding is to identify promising directions for future investments. Predictive analytics can play a pivotal
role in guiding these forward-looking decisions.
R1: Identifying Investment Opportunities. Our system should support a forward-looking capability,

allowing users to uncover potential investment opportunities based on their desired impact outcomes
for the future. This involves pinpointing emerging research topics and, more importantly, identifying
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Figure 2: FtF system overview. The system consists of a preprocessing module, an analysis module, and
a visualization module.

the right people (PIs) for collaboration or funding.

3.2 System Overview

Guided by these analysis tasks, we designed FtF, a web-based application that consists of three modules
(Fig. 2): (1) the preprocessing module, (2) the analysis module, and (3) the visualization module. The
preprocessing module cleans multiple data sources, stores them in the database, and supports dynamic data
queries (S1). The analysis module provides a list of metrics (S3, E1) and prediction models to indicate
grant topics, principal investigators (PI), and research institutions for future investment (R1). These two
modules form the backend of the system, which is implemented by Google BigQuery, Python, and Flask.
The visualization module uses coordinated views with intuitive interactions to present both historical data
on grant outcomes (S2, S3, E1, E2) and prediction results (R1) to guide future grant-making, implemented
by React.js, Redux.js, D3.js, and TypeScript. We introduce each module with more details in the following
sections.

4 DATA ANALYSIS

The analysis module is responsible for the calculations that serve as the foundation for the visual analytics
systems. First, this module assesses and aggregates the multidimensional impacts of science and funding at
different levels, from individual papers and grants to broader categories at the PI and field levels. Second,
the module predicts future research investment opportunities by estimating the potential impact of recent
grants. We present more details regarding the system’s data sources, preprocessing methods, funding impact
assessments, and future investment recommendations below.

4.1 Data Sources and Preprocessing

This analysis of the broad impact of science funding requires the integration of the following four datasets
containing information about the science ecosystem:
• Dimensions [19]. This dataset comprises data on global science funding (7M grants), scientific pub-

lications (140M), patents (160M), clinical trial records (800K), and their citation linkages (1.7B). It
also contains information about researchers (51.7M), including their names and affiliations and their
connections to grants (9M, mostly PIs) and paper-author pairs (461M).
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• Overton [21]. This dataset includes global policy documents (10.9M) and citation linkages between
policies and papers (13M).

• Altmetric [23]. This dataset provides insights into public engagement with science through newsfeeds
(5.8M) and citations between news sources and papers (6M).

• SciSciNet [71]. This dataset includes a large-scale open data lake for the science of science research,
covering over 134M scientific publications and millions of external linkages to funding and public uses.
Specifically, we use a set of SciSci metrics (e.g., h-index and productivity) at the paper and researcher
level, which is a great addition to the Dimensions dataset.

We preprocessed the data sources to limit our analysis to all types of documents published between
2000 and 2021 to ensure robust data coverage (see Supplementary Notes 1 and 2).

Figure 3: The data analysis procedure. (A) We preprocess the data into a heterogeneous network with
multidimensional attributes. (B) We then define and calculate a list of metrics to measure the impact of
science and funding at multiple levels. (C) Finally, we use a prediction model to recommend the grant
topics and PIs that represent the best opportunities to achieve future impact in a specific impact topic.

4.2 Measure the Funding Impact

The impact of science and science funding is multidimensional and extends through a range of levels, from
papers and grants at the lowest level to grant fields and funding agencies at the highest level. In collaboration
with experts in the SciSci field, we developed a set of metrics to assess the diverse funding outcomes.
These metrics are multidimensional, measuring not only the direct scientific impact of the funding based
on publications and citations but also measuring a wide range of broader impacts, encompassing the
marketplace, clinical trials, policy, and media. These impacts can be categorized into the direct outcomes
of the funding and its broader impacts, which are distinguished by different citation relationships:

Direct Outcomes. The direct impact of funding can primarily be seen in scientific publications, patents,
and clinical trials that cite grants directly. These outcomes are captured by the number of citations in papers,
patents, and clinical trials to a grant. For a given grant G , its direct impact can be measured by:
• Number of Funded Papers: the total number of published papers that acknowledge the funding G .

• Number of Funded Hit Papers: the number of hit papers that acknowledge G . A hit paper is a paper that
has a citation count, Cp, that is above a particular percentile threshold T f

y (e.g., top 5%) in a specific field
f and year y.

• Number of Funded Disruptive Papers: the number of funded papers within the top 5% based on their
disruption index, a measure derived from citation networks [72]. The disruption index (D) for a paper p
quantifies its divergence from the existing literature, potentially indicating the opening of new research
areas. It is calculated as: Dp =

ni−n j
ni+n j+nk

, where ni is the number of future papers that cite the focal paper

8



p but none of its references, n j is the number of future papers that cite the paper p and one or more of its
references, and nk is the number of references in p that are not cited by papers citing p.

• Number of Funded Patents: the total number of patents that acknowledge G .

• Number of Funded Clinical Trials: the number of clinical trials that acknowledge G .
Broader Impact. Recent studies suggest that the true impact of funding goes far beyond publications,

affecting industry and society more broadly [10]. To capture these broad outcomes from funding, we
examine the citation linkages between funded papers and various downstream applications. By doing so,
we not only expand the pools of patents and clinical trials stemming indirectly from funding [34], but also
track the broad impact of science on other public sectors such as policymaking and media news. Given a
funded paper P , we define the following metrics to estimate its broader impact:
• Patent Citation: the total number of patents citing P . This metric represents the marketplace impact of a

paper.

• Clinical Trial Citation: the total number of clinical trials citing P , measuring the clinical impact.

• Policy Citation: the total number of policy documents citing P , measuring the policy impact.

• Newsfeed Citation: the total number of news articles citing P , measuring the media impact.
Using the grant-to-paper linkages, we aggregate the impact metrics for all individual papers that cited a
grant. We define the broader impact of a grant by summing up all such downstream citation counts received
by papers funded by the grant.

Aggregation. Based on grant-level impact, we further aggregate and calculate the funding impact at
the PI level and grant field level by summing the direct and broader impact measures of individual grants.
Additionally, we calculate the following three metrics for a PI to measure the PI’s scientific impact:
• H-index: the PI’s h-index. The index of a researcher is h if she has h papers with at least h citations and

all her remaining papers have fewer than h citations.

• Productivity: the PI’s total number of publications.

• Average LogC10: the log value of the average number of citations within 10 years of publication for all
of the PI’s papers [73].

We also calculate a relative impact index for a grant field or a funding agency X . We introduce the
Relative Impact Index (RII) to benchmark their performance across various impact types, compared to
a global baseline. For a given impact type i and a grant field or a funding agency X , RII measures the
fraction of grants in X with an impact in an impact type i, normalized by the same fraction obtained on all
grants for that impact type:

RIIi,X =
num_grant in X with impact type i/num_grant in X

Total num_grant with impact type i/Total num_grant
(1)

4.3 Scientific Investment Recommendation

One powerful component of FtF is its capability to inform funding agencies about future investment
opportunities. This aspect of the system allows funders who seek a particular outcome to identify optimal
topics and principal investigators (PIs) for future grants. As a substantial amount of time must pass after a
grant is given to observe evidence of the impact of the funding, we employ a machine learning model that
forecasts the future impact of recent grants across various impact domains and topics, thereby allowing
real-time insights into a recent grant’s likely outcomes and allowing for the identification of emerging
high-impact grant topics and PIs within a chosen impact domain.
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In particular, we introduce a prediction model that utilizes grant abstracts as input to predict the intrinsic
potential for various types of impacts, encompassing both direct outcomes and broader impacts, as detailed
in Section 4.2. For instance, focusing on patents as direct outcomes, our prediction task is to assess the
potential of a grant to directly result in at least one patent in different patent categories, with each patent
topic requiring a specific machine learning model. To this end, we leverage SciBERT [74], which is a large
language model based on the BERT architecture and has been pre-trained on a large corpus of scientific
text data, enabling it to understand text within the scientific domain. SciBERT transforms words in a grant
abstract into tokens, each of which is mapped to a 768-dimensional vector. These vectors are then averaged
to generate a single vector representing the entire abstract. This resultant vector can be employed as input for
machine learning classifiers. One such classifier is XGBoost [75], an efficient and scalable implementation
of gradient boosting algorithms. XGBoost is known for its speed and performance in handling large-
scale datasets and has been widely used in various machine-learning tasks due to its high accuracy and
interpretability. Here, we utilize XGBoost as the classifier, which takes the SciBERT embeddings as
the input and determines whether a grant generated the impact regarding the specific prediction task.
Additionally, we employ patents as direct outcomes to compare the performance of XGBoost with other
common classifiers (e.g., random forest). Our findings indicate that XGBoost demonstrates comparable
performance with other classifiers.

Implementation Details. A number of impact prediction models have been trained in our system for
different impact factors. To facilitate the understanding, we take the “direct patent outcome” prediction as
an example. Other models are trained by following a similar procedure.

In particular, we employ the pre-trained SciBERT model provided by the Allen Institute for AI [76].
This model takes a text input with no more than 512 words. It is an uncased model that does not distinguish
between uppercase and lowercase letters during training or inference. We use it to convert the grant text
into latent vectors. In the next step, we utilize the official Python implementation of XGBoost [77] in our
system as the prediction model. The model has been trained based on a binary classification task with the
goal of estimating the probability of a given grant having patent outcomes in topic A in the future.

To train the model, we collected all grants either from a funding agency or from a funding field. Based
on these data, we calculate the averaged time cost (denoted as Y ) for filing a patent with the funding support
from the grant. After that, Y is rounded as an integer to facilitate calculation. All the grants from 2000
to 2021−Y have been used as the training samples for our prediction model. Here, 2021−Y gives a
reasonable time span for filing the patent, mitigating potential biases from using grants with insufficient
time windows. After that, we prepared both the positive and negative samples. In particular, given a topic
A , we collect all the related grants based on which one or more patents have been filed from 2000 to
2021−Y as the positive samples, whereas an equal number of grants without any patent outcomes are
randomly sampled as negative samples. 80% of the positive and negative samples were used as training
samples, leaving the rest 20% for testing.

5 VISUALIZATION DESIGN

In this section, we introduce the detailed visualization design of our system. We first briefly introduce the
user interface as an overview and then describe the specific details of each visualization view.

5.1 User Interface

Our system integrates six coordinated views to support the analysis tasks outlined in Section 3.1 (Fig. 4).
Given the large amount of grant data, our system always lets the users start by filtering the data via the
Query View (S1, Fig. 4(A)), in which they can choose a funding agency or select a time range. The selected
grants are shown in the Grant View (S2, Fig. 4(B)), in which the grants are clustered based on different
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Figure 4: The FtF system UI. The Query View (A) is for data filtering. The Grant View (B) and PI View (C)
present grant project summaries. The Impact Landscape View (D) allows for a detailed exploration of the
multidimensional impact of funding. The Impact Type View (E) enables users to select the type of impact
they want to explore, and the Impact Entity View (F) displays contextual information about different types of
impacts.

research fields as bubbles with the bubble size indicating the funding amount. Once a field is selected,
the details such as demographics and profiles of the corresponding PIs are visualized in the PI View (S3,
Fig. 4(C)) for users’ reference. At the same time, the corresponding grants, as well as their outcomes (i.e.,
policies, patents, clinical trials, and news reports that cite these grants, indicating the direct or broader
impact of these grants), are visualized in the Impact Landscape View (E1, Fig. 4(D)) in the form of a
multi-partite graph. In particular, all the grants are aggregated by research topics and shown in the center as
glyphs. Their outcomes are also aggregated by topics and visualized as different clusters of graph nodes
surrounding and connecting to the center glyphs. The sizes of the clusters directly estimate the grants’
impact in terms of the corresponding outcomes. Users can hover on the grant or impact topic nodes and
use a word cloud to learn fine-grained text information about this topic (Fig. 7(A, B)). Users can switch
between direct and broader impacts from the Impact Type View (E1, Fig. 4(E)). The outcome clusters in the
Impact Landscape View will be changed accordingly. The system also incorporates a context view showing
the outcome distribution over other dimensions, such as policy source organizations (E2, Fig. 4(F)).

Despite the above design that supports impact exploration, our system also predicts the potential impacts
of each recent grant. The topics (i.e., the nodes in the impact graph) of the grants that may have a higher
impact in the future are highlighted by purple rings (R1, Fig. 7(C)). The corresponding PIs are also listed in
Fig. 4(C2) for users (funding agencies) to make a future investment.
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5.2 Impact Landscape View

We designed the Impact Landscape View to illustrate the multidimensional impact of grants, using citation
links between the grants and their outcomes in the form of a multipartite impact graph (E1, Fig. 4(D)). A
grant may have four different types of outcomes (i.e., direct or broader impact), including policies, patents,
clinical trials, and news reports that acknowledge or mention the grant or cite the funded papers of that
grant. These outcomes reveal the grant’s impact from different aspects. To ensure scalability, both the
grants and their outcomes are aggregated by their topic labels provided in our data. As a result, in the
impact graph, each node either indicates a collection of grants under the same research topic (denoted as the
grant topic node) or a collection of outcomes indicating the same type of impact and sharing the same topic
(denoted as the impact node). The node size represents the number of grants or outcomes in the cluster.

Layout. To layout the graph, we introduce a hybrid layout method. In particular, we first use a force-
directed layout method to layout the entity-type level graph (e.g., grant, paper, and patent). Second, within
each impact type (i.e., paper, patent, clinical trial, and newsfeed), we employ a bubble treemap layout [78]
to pack the same type of impact nodes together as a cluster with a hierarchical topic structure. The centers
of these bubble treemaps are then positioned at the locations of their corresponding entity-type nodes within
the entity-type level graph. Third, the cluster of grant topic nodes is initially placed in the middle of the
view, surrounded by clusters of different impact nodes that are placed at the edge of the view. Another
force-directed layout is employed to fine-tune the positions of the grant topic nodes to better reveal their
relationships with a visually coherent and balanced layout. Specifically, the following forces are introduced
to fine-tune the initial layout of the grant topic nodes:

• Impact Force (Fimpact): an attraction force between a grant topic node in the middle and the impact nodes
in the surrounding clusters. It is formally defined as:

Fimpact =
n

∑
i=1

{(
RIIi −1

)
·di · ûi, RIIi ≥ 1,(

RIIi −1
)
· (1/di) · ûi, RIIi < 1,

(2)

where Fimpact is the impact force, RIIi is the RII value for the i-th impact factor, di = ∥Ximpacti −Xgrant∥ is
the Euclidean distance between the i-th impact type node and the grant node, ûi =

(
Ximpacti −Xgrant

)
/di

is the unit direction vector, Ximpacti is the position vector of the i-th impact node, and Xgrant is the position
vector of the grant glyph.

• Containment Force (Fcontain): the force to constrain the positions of the grant topic nodes within the
boundary of its containing cluster. It pulls a node towards the center if it strays beyond a predefined
maximum distance.

Fcontain =−·max(0,d −dmax) · r̂, (3)

where d is the distance from the node to the center, dmax is the maximum allowed distance, and r̂ is the
unit vector pointing from the center to the node.

• Collision Force (Fcollide): a force that prevents nodes from overlapping with a padding parameter p. It is
proportional to the amount of overlap between nodes:

Fcollide = ·max(0,r1 + r2 + p−d) · r̂, (4)

where Fcollide is the collision force, r1 and r2 are the radii of the two nodes, d is the distance between the
centers of the two nodes, p is a constant padding term, and r̂ is the unit vector pointing from the center of
one node to the center of the other node.
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Figure 5: The visual design of the ImpactGlyph is inspired by the metaphor of a ripple. (A) In the historical
mode, the glyph consists of a central grant circle surrounded by two concentric impact ripples. (B) An
illustrative ripple metaphor, with a stone as the “epicenter.”

The three forces are balanced by three parameters to adjust the primary effect of the final layout:

F⃗total = αF⃗impact +β F⃗contain + γF⃗collide, (5)

where F⃗total is the total force acting on the node, α , β , and γ are parameters that control the strength of the
impact force, containment force, and collision force, respectively, and F⃗impact, F⃗contain, and F⃗collide are the
impact force, containment force, and collision force, respectively.

We simulate the force system with alpha cooling and velocity decay, allowing it to gradually stabilize
into a visually coherent and well-balanced layout. Finally, the citation linkages between the grant topic
nodes and the impact nodes are bundled by impact types to reduce visual clutter and facilitate reading.

ImpactGlyph. To summarize the multidimensional impact of each collection of grants represented by
the grant topic node and facilitate the impact comparisons across different grant topics, the ImpactGlyph is
introduced. The design is inspired by a visual metaphor of the ripple caused by throwing a stone into the
water, as shown in Fig. 5.

In particular, the glyph consists of a center node (i.e., the collection of grants in the same topic) and
two levels of outer rings respectively, indicating the corresponding direct and broader impacts of these
grants. Two grey circular dashed lines set the global baseline for the RII index for the direct and broad
impacts, respectively. Two radar charts symbolize the direct and broader impacts as concentric ripples from
multiple dimensions, including patents, clinical trials, policies, and news mentions. In our design, we use
a belt with thinness to replace the polyline that indicates multidimensional values in the traditional radar
chart. The thickness of the belt encodes the grants’ impact deviations across different impact dimensions
from the baseline, which magnifies the difference. The color of the belt transitioning from darker to lighter
green illustrates the grants’ spillover effect from immediate outcomes to wider societal impacts. Altogether,
this visualization enables users to swiftly grasp the impact of a group of grants across various dimensions
relative to the global baseline using the shape and color of the ripple.

In our system, the above glyph design has two modes: (1) the historical mode and (2) the prediction
mode. In the historical mode (Fig. 5), the historical funding impact is compared with global baselines using
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the RII index. The size of the center node reflects the number of historical grants within the timeframe
selected by the user, serving as the “epicenter” of the ripple. In the prediction mode (Fig. 7(C)), after
specifying an impact topic of interest, the number of recent grants with high-prediction scores (above a
threshold) will be highlighted as a purple ring, wrapping the previous historical center node, with the size
encoding the number of high-prediction score grants. The two impact ripples are hidden for simplicity.

TopicLens. Despite the above views, a TopicLens (Fig. 7(A, B)) is designed to illustrate the detailed
topic keywords in the form of a wordle when the mouse hovers over a grant topic node in the impact graph.
Word size encodes the overall keyword frequency with an overlaid sparkline showing its temporal trend,
which provides insights into evolving grant or impact topic foci over time.

5.3 Contextual Views

Despite the above primary views, FtF provides a list of side views with contextual information, enabling
users to understand the funding impacts and make informed decisions for future investments.

Query View. In this view, users can filter grants based on criteria such as grant year, funding amount,
and agency, enabling the flexible search for grants of interest (S1, Fig. 4(A)).

Grant View. This view summarizes the funded projects for the selected grants in terms of grant fields or
sub-institutions (S2, Fig. 4(B)). The size of the bubble encodes the total funding amount within each grant
field or sub-institution. The bubble’s position indicates the similarity among grant groups (i.e., the semantic
similarity of grant fields and funded grant fields of sub-institutions), as determined by dimension reduction
techniques (i.e., t-SNE).

PI View. This view shows the statistics of funded PIs, including demographics, universities, fields of
study, and impact metrics (S3, Fig. 4(C)). In addition, we also provide a query and ranking using universities
and impact metrics to enable locating detailed information in the PI list.

Impact Type View. This view provides a list of impact types for users to select, which will be further
explored in the Impact Landscape View (E1, Fig. 4(E)). For each impact type, a bar chart shows the average
number of impact documents produced by a grant against a global baseline. Users can switch between
direct and broader impacts via a dropdown menu.

Impact Entity View. In addition to topics, this view provides context through bar charts summarizing
the distribution of impact documents across various dimensions (E2, Fig. 4(F)), such as patent assignees,
policy sources, clinical trial phases, and newsfeed origins, aiding in a deeper understanding of funding
impacts.

6 EVALUATION

We evaluated FtF through a quantitative study of the prediction model, two case studies, and a series of
interviews with experts.

6.1 Quantitative Evaluation of the Prediction Model

We evaluated our model’s performance using the Area Under the Curve (AUC) metric and assessed
its prediction accuracy and scalability across the two datasets utilized in the case studies (Section 6.2).
Employing the prediction pipeline described earlier, we focused on the top K topics in the predictions for
each type of impact, ensuring these topics collectively cover more than 80% grants in each prediction task.
We then filtered out topics with fewer than 100 positive samples.

• AUC. We present the AUC results on the test sets for the two case studies across different types of impacts
in Fig. 6. The figure shows that overall prediction performance is good and remains robust for all types of
impacts.
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Figure 6: The prediction performance (AUC) on the test set for two case studies. The average AUC is
reported for each type of impact, based on the performance across topics for that type of impact. The
dashed lines at 0.5 indicate the baseline performance of random guesses. Overall, the results demonstrate
good performance for our prediction tasks. (d) represents direct impact and (i) represents indirect impact.

• Scalability. XGBoost is known for its scalability and efficiency [75]. We also ran the codes in parallel for
different topics to accelerate the prediction process. Moreover, the SciBERT embeddings and prediction
model are pre-executed and do not impact the visualization system in real time.

6.2 Case Study
We invited our experts to explore the system and then summarized their observations and formed two case
studies to demonstrate our system.

6.2.1 Funding Impact for a Funding Agency

We first demonstrated our system from a funder’s perspective, engaging our experts EA and EB and
showcasing the ability of FtF to help them access the funding impact and inform investment decisions.

Overview of the funding portfolio. The experts first query grants from a federal funding agency (S1,
Fig. 4(A)) and start from the Grant View and PI View to get an overview of all funded projects. This agency
has a focus on four main fields (S2, Fig. 4(B)). Zooming in on these grant fields, EA noticed a gender
disparity across some of the topics they fund, where female PIs appear underrepresented (S3, Fig. 4(C1)).
Looking into the radar chart for details, he found that projects by female PIs were on par and, in some cases
surpassed those by male PIs in certain impact measures (e.g., policy impact). This insight about gender
disparity clearly caught the attention of the expert, “We should definitely look more into this.”

Funding impact. The expert EA was very excited to explore the societal impacts of their grants, as
these impact measures represent entirely new information for him. Indeed, given the novelty of the data and
the linkages, the various impact dimensions offered by FtF present information that has not been available
to decision-makers like EA, who described himself as “blind” to these outcomes. EA turned to Impact Type
View (E1, Fig. 4(E)), selecting the broad impact. He was thrilled to learn that the marketplace, clinical, and
policy impacts of their grants were notably higher than the global baseline. For further details about these
types of impacts, he went to the Impact Landscape View (E1, Fig. 4(D)). The ImpactGlyph allowed EA to
focus on the field with the largest proportion of funding expenditures which has high impacts of the three
impact types (Fig. 4(D1)) and to zoom in on the detailed topic-level impacts. The system revealed that the
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Figure 7: Predicted result in Case 1. (A) Historically, grants with impacts on Alzheimer’s clinical trials have
focused on disease understanding. (B) The recent grants with high prediction scores are oriented toward
social and life dimensions of the disease. (C) The topic distribution of recent high-prediction score grants
(purple rings) to have an impact on Alzheimer’s disease clinical trials.

funded research had been cited in many policy topics (e.g., “Virus Disease”, Fig. 4(D2)). Although the
agency mainly funds research in the US, he was delighted to learn that the policy impact of their funded
projects extends across the globe, with numerous policy citations from the Germany, United Kingdom,
and other intergovernmental organizations (IGOs) (E2, Fig. 4(F1)), so as the patent impact (Fig. 4(F2)).
He exclaimed, “My boss should see this!” Our interactions with EA suggest that FtF provides him with
hard data that can substantially inform their decision-making. We were especially delighted to see that
some of the insights were derived from novel data linkages that offered relevant yet previously unknown
information to key decision-makers in science, like EA.

Future investment guidance. Whereas EA is from a public funder, our expert EB comes from a private
investment firm that specializes in investing in biomedical research in academia to advance healthcare. EB
was particularly interested in Alzheimer’s research, probably due to the increased investment in this area by
his organization. Here he was drawn to our predictive analytics, which showcases the predicted clinical
impacts of current projects related to Alzheimer’s disease (R1, Fig. 7(C)). Insights from predictive analytics
are, in general, new to decision makers and must be interpreted with care. Nevertheless, by looking at the
detailed grant keywords, EB noticed an important trend. Whereas the research on Alzheimer’s disease that
has high clinical impacts over the past twenty years focused primarily on disease understanding (Fig. 7(A)),
the predictive analytics suggest that current grants with high predicted clinical impacts (i.e., high prediction
scores) seem to be more concentrated on the social and life dimensions of the disease (Fig. 7(B)). Musing
over this trend, EB noted, “This is very interesting. I wonder if we should look more into combining medical
treatment with social support systems.” EB also consulted the PI View (Fig. 4(C2)) and noticed several top
PIs with relevant research who had not yet been funded by his organization. The system allowed him to
easily navigate to these PIs’ research profiles to assess potential fit and collaboration opportunities. Here,
Alzheimer’s disease is presented merely as an illustrative example to demonstrate the system’s predictive
capabilities, and similar analyses could be conducted for other diseases or research areas.

Overall, our system offers domain experts key information that they were previously unaware of. This
knowledge broadens and sharpens the search space over which they evaluate investments (in ideas or
people). While funding or investment decisions depend on a large variety of factors and considerations, FtF
helps decision makers reduce key blind spots and ultimately offers a better and more comprehensive set of
data to inform evidence-based decision making.
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6.2.2 Funding Landscape for the Visualization Community

Given the growing interest in interdisciplinary research [79], our SciSci experts (EC-EE) examined visual-
ization field grants to illustrate the diverse impact of global funding on interdisciplinary research.

Overview of the funding impact. The experts began their exploration of the system by looking at an
overview of the funded projects (S2, Fig. 8(B1)). Reflecting the highly interdisciplinary nature of the vis
community, the funded projects cover a wide range of topics beyond computer science, such as education,
biomedicine, and design. Exploring the broad impact of these projects, they found that the projects have
had a significant influence on transportation, environmental, and health policies (E1, Fig. 8(A1)). Digging
deeper into the policies about oceans, they discovered that these policies had a strong emphasis on climate
change and that this impact was seen in the policy documents of multiple countries, as well as IGOs
(E2, Fig. 8(A1)). An expert noted that the system documents a contribution of visualization research that
had not necessarily been recognized in the past: “Interesting... This suggests that vis research plays a
role in addressing key societal challenges such as climate change, which is currently underappreciated.”
The experts then turned to the media impact (E1, Fig. 8(A2)). Both specialized and general-audience
media organizations have covered vis research, touching on a wide range of topics, including AI and
pandemics. The breadth of coverage reflects the far-reaching media interest in and the applicability of vis
research. While experts may have been aware of this broad appeal at a high level, FtF provided them with
concrete evidence of this range and specificity that they had not seen before. The system also allowed the
experts to compare the direct and indirect outcomes of grants in terms of patents (E1, Fig. 8(A3)). They
discovered a new patent category in the top frequent patent fields in indirect impact: transmission of digital
information (H04L). “It seems that researchers in vis don’t typically file patents in this technology topic,
but their scientific expertise is widely leveraged in related areas,” noted an expert, seeing an “opportunity
in leveraging vis for digital communication technologies.”

Figure 8: The impacts of funding for Case 2. (A) The broader impacts of funded visualization research
include the policy impact for climate change (A1), media impact for AI (A2), and marketplace impact for
digital communication (A3). (B) The comparison of funded visualization research in different countries
shows interesting variation between the fields that are funded ((B1)-(B2)) and the science impact ((B3)-
(B5)).

National disparities in visualization research. The experts were also interested in exploring national
differences in funded vis projects and their impacts. For this, the experts compared three countries: the

17



United States, the United Kingdom, and China. Most funding for vis projects goes to the computer science
topic, but there were notable differences between the countries in the distribution of other fields (S2,
Fig. 8(B2)): the U.S. prioritizes education, the U.K. favored art and design, and China emphasized
biomedical fields. Turning to the scientific impacts, though vis projects in the three countries all tend to be
greater than the global average, the experts found that there were notable variations across countries that
they had not seen before (E1, Fig. 8(B3)-(B5)). The U.K. showed the highest propensity for disruptive
science among the three countries (Fig. 8(B5)). Interestingly, vis papers from China feature a higher
fraction of disruptive work than the U.S.. When the experts combined this insight about disruptive science
with other related information the system offered, including the hit papers statistics, they learned that vis
funding from China tends to yield more papers per grant (Fig. 8(B3)), but not substantially more hit papers
than most other countries (Fig. 8(B4)).

In this case, FtF offers experts a wide range of insights—from the interdisciplinarity of vis work to
national differences in the impact.

6.3 Expert Interview

In addition to feedback from the experts described in Section 3.1, we presented the system to new
experts, including a founding director of a leading university’s Technology Transfer Office (PA) and senior
researchers who focus on the impact of science on public policy and health (PB and PC). We also interviewed
three visualization experts to potentially identify other uses of the system beyond its applications for funding
agency decision-making, including a senior Ph.D. experienced in grant writing (PD) and two graduates
with over three years of research experience (PE and PF ). Each interview with these new experts lasted 90
minutes, covering project introductions, system and visual design illustrations (using case 1), free time to
explore the system, and a semi-structured interview. Experts were encouraged to share their thoughts and
impressions during the process. We summarize the feedback from the two groups of experts below.

Analysis Workflow. All experts reported that the system’s workflow was straightforward and that they
could complete the analysis tasks, from data query and funded project analysis to the evaluation of impact.
EB praised the system’s sophistication and its advances beyond the capabilities offered by their daily used
tools like WOS and Scopus. EA was also excited about the system’s ability to identify research topics and
PIs using prediction results: “This changes the game. Instead of passively waiting for proposals, I can use
the tool as a radar to scan all suitable topics and PIs to invest in.”

Investment prediction and impact metrics. EA appreciated the prediction feature that allowed him
to effectively identify potential investment opportunities, and he commended the impact metrics for their
clarity and usefulness. EA also praised the relative impact index and the ImpactGlyph, which he saw as
valuable tools for quickly identifying the strengths and weaknesses of a group of grants. However, he called
for greater transparency in the prediction model. Voicing similar enthusiasm, PC appreciated the PI and
grant field level impact measure to compare high-level funding impacts such as funders and countries.

Visualization. The experts agreed that the visualization components satisfy all of the analysis tasks. EB,
PA, and PE were especially impressed with the citation flows in the Impact Landscape View that features
an intuitive presentation of the impact of funding at the topic level. PD commented that the word cloud
design was both readable and easy to understand. Many of the experts appreciated the ImpactGlyph. One
observed, “the ripple metaphor shows the multi-dimensional impact in a vivid way.” Nevertheless, EA and
PA noted that there would be a learning curve in their use of the glyph, acknowledging, “it’s a bit new to
me.” All experts were able to understand and use it effectively, however, after being given some time to
explore the system. One expert affirmed, “I think it will be very useful to compare group level grants, as
the difference among glyph shapes is quite apparent.”

Suggestions. The experts saw the current metrics as straightforward and useful for analyzing the impact
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of funding, but they had some thoughtful suggestions adding more innovative measures such as “risk.” EA
also recommended adding a raw data table that presents both grants and impact documents for deeper
analysis. EB pointed out potential limitations in the data, “many patents do not directly indicate the support
of grants. We need to do deep data cleaning to search the whole patent doc to see whether they have
claimed grant support.”

7 DISCUSSION

Our study illustrates how connecting funding to its downstream impacts opens new possibilities for both
research and practice. By linking grants to publications, patents, clinical trials, policy, and media at scale,
Funding the Frontier (FtF) provides not only a descriptive map but also an integrative infrastructure for
future work in the science of science and science policy.

The availability of large-scale data linking upstream funding to diverse downstream impacts presents
new research opportunities. With FtF, researchers can examine how different funding models shape the
trajectory of science and innovation, compare funding portfolios across nations, and study the efficiency
and time lags of investment returns across domains. The system can also support investigations into
long-standing questions. For example, how public versus private funders differ in their societal footprint, or
whether funding strategies that emphasize interdisciplinarity systematically yield broader impacts. In this
sense, FtF represents not an end point but a foundation for new lines of work across the science of science,
innovation studies, and policy research.

Equally important, FtF was built to be actionable by non-technical stakeholders. Policymakers, program
officers, university leaders, and even philanthropic funders face growing pressure to justify investments,
prioritize areas of opportunity, and demonstrate societal relevance. By making complex data accessible and
interpretable, FtF equips these decision-makers to explore their portfolios, identify blind spots, and consider
new directions. For example, program officers might use the system to surface emerging investigators
with outsized potential; university leaders might assess how their institution’s grants contribute to policy
or market outcomes; and policymakers might gain perspective on whether federal portfolios align with
national and regional priorities. The diversity of these use cases underscores the broad value of making
SciSci insights transparent and navigable.

While our case studies focus on selected funders and domains, the underlying datasets and framework
are global in scope. The system is not limited to U.S. agencies but can, in principle, extend to philanthropic
organizations, multinational funding programs, and national science foundations worldwide. This breadth
makes FtF a potential global public good: a resource for comparing funding impacts across borders and
for enabling international comparisons at a moment of intensifying global competition in science and
technology.

As a prototype, FtF has several limitations. Our predictive models, while effective, can be further
improved with more data and more advanced machine learning methods, and can benefit from further
development to maximize transparency and interpretability, particularly for stakeholders unfamiliar with
the technical aspects. In addition, while our datasets are among the most comprehensive, they are inevitably
shaped by coverage biases, such as the predominance of English-language sources in policy documents
and newsfeeds, which may underrepresent impacts in other linguistic and regional contexts. Further, while
our evaluation demonstrates the system’s usability, the evaluation should be considered as exploratory, and
future work may further expand the datasets, integrate additional impact measures, and tailor customized
visual workflows to distinct user groups, from administrators and leaders to data scientists and researchers.
Addressing these challenges will improve the robustness of the system, further enhancing its value as an
infrastructure for both decision-making and research.

Taken together, FtF demonstrates how the combination of SciSci insights and visualization design can
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help address a long-standing gap between funding inputs and societal outcomes. At a time when science
budgets face scrutiny, geopolitical competition intensifies, and public trust in science is contested, the
ability to assess and communicate the multidimensional impacts of funding is critical. By providing a
transparent, scalable, and extensible framework, FtF offers both a practical resource for decision-makers
and a foundation for future research into the broad impacts of science and science investment.

DATA AVAILABILITY

Data necessary to reproduce all plots will be made freely available.

CODE AVAILABILITY

Code necessary to reproduce all plots will be made freely available.

20



REFERENCES

[1] Williams, R. S., Lotia, S., Holloway, A. K. & Pico, A. R. From scientific discovery to cures: Bright
stars within a galaxy. Cell 163, 21–23 (2015). URL https://doi.org/10.1016/j.cell.2015.
09.007. 2, 3

[2] Wang, X., Zhang, S., Liu, Y., Du, J. & Huang, H. How pharmaceutical innovation evolves: The path
from science to technological development to marketable drugs. Technological Forecasting and Social
Change 167, 120698 (2021). URL https://doi.org/10.1016/j.techfore.2021.120698. 2, 3

[3] Thelwall, M. & Kousha, K. Are citations from clinical trials evidence of higher impact research? An
analysis of ClinicalTrials.gov. Scientometrics 109, 1341–1351 (2016). URL https://doi.org/10.
1007/s11192-016-2112-1. 2, 3

[4] Ahmadpoor, M. & Jones, B. F. The dual frontier: Patented inventions and prior scientific advance.
Science 357, 583–587 (2017). URL https://doi.org/10.1126/science.aam9527. 2, 3

[5] Fleming, L., Greene, H., Li, G., Marx, M. & Yao, D. Government-funded research increasingly
fuels innovation. Science 364, 1139–1141 (2019). URL https://doi.org/10.1126/science.
aaw2373. 2, 4

[6] Council, N. R. et al. Using science as evidence in public policy (National Academies Press, 2012).
URL https://doi.org/10.17226/13460. 2, 3

[7] Furnas, A. C., LaPira, T. M. & Wang, D. Partisan disparities in the use of science in policy. Science
388, 362–367 (2025). 2, 3

[8] Bush, V. Science, the endless frontier (Princeton University Press, 2020). URL https://doi.org/
10.1515/9780691201658. 2

[9] Azoulay, P., Graff Zivin, J. S. & Manso, G. Incentives and creativity: evidence from the academic
life sciences. The RAND Journal of Economics 42, 527–554 (2011). URL https://doi.org/10.
1111/j.1756-2171.2011.00140.x. 2, 3

[10] Yin, Y., Dong, Y., Wang, K., Wang, D. & Jones, B. F. Public use and public funding of sci-
ence. Nature Human Behaviour 6, 1344–1350 (2022). URL https://doi.org/10.1038/
s41562-022-01397-5. 2, 3, 4, 9

[11] Jones, B. F. Science and innovation: The under-fueled engine of prosperity. Rebuilding the Post-
Pandemic Economy, ed. Melissa S. Kearney and Amy Ganz (Washington DC: Aspen Institute Press,
2021) (2021). 2

[12] NSF’s perspectives on broader impacts. https://new.nsf.gov/funding/learn/
broader-impacts. 2, 3

[13] Price, D. J. D. S. Little science, big science (Columbia University Press, 1963). URL https:
//doi.org/10.7312/pric91844. 2

[14] Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018). URL https://doi.org/10.
1126/science.aao0185. 2

21

https://doi.org/10.1016/j.cell.2015.09.007
https://doi.org/10.1016/j.cell.2015.09.007
https://doi.org/10.1016/j.techfore.2021.120698
https://doi.org/10.1007/s11192-016-2112-1
https://doi.org/10.1007/s11192-016-2112-1
https://doi.org/10.1126/science.aam9527
https://doi.org/10.1126/science.aaw2373
https://doi.org/10.1126/science.aaw2373
https://doi.org/10.17226/13460
https://doi.org/10.1515/9780691201658
https://doi.org/10.1515/9780691201658
https://doi.org/10.1111/j.1756-2171.2011.00140.x
https://doi.org/10.1111/j.1756-2171.2011.00140.x
https://doi.org/10.1038/s41562-022-01397-5
https://doi.org/10.1038/s41562-022-01397-5
https://new.nsf.gov/funding/learn/broader-impacts
https://new.nsf.gov/funding/learn/broader-impacts
https://doi.org/10.7312/pric91844
https://doi.org/10.7312/pric91844
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1126/science.aao0185


[15] Wang, D. & Barabási, A.-L. The science of science (Cambridge University Press, 2021). URL
https://doi.org/10.1017/9781108610834. 2

[16] Weller, K. Social media and altmetrics: An overview of current alternative approaches to measuring
scholarly impact. Incentives and performance: Governance of research organizations 261–276 (2015).
2, 3

[17] Molnar, A., McKenna, A. F., Liu, Q., Vorvoreanu, M. & Madhavan, K. Using visualization to derive
insights from research funding portfolios. IEEE Computer Graphics and Applications 35, 91–c3
(2015). URL https://doi.org/10.1109/MCG.2015.68. 2, 5

[18] Dou, W., Yu, L., Wang, X., Ma, Z. & Ribarsky, W. HierarchicalTopics: Visually exploring large text
collections using topic hierarchies. IEEE Transactions on Visualization and Computer Graphics 19,
2002–2011 (2013). URL https://doi.org/10.1109/TVCG.2013.162. 2, 5

[19] Dimensions. https://www.dimensions.ai/. 2, 5, 7

[20] Aggregated analysis of ClinicalTrials.gov (AACT). https://aact.ctti-clinicaltrials.org/.
2

[21] Overton. https://www.overton.io/. 2, 8

[22] Patentsview. https://patentsview.org/. 2

[23] Altmetric. https://www.altmetric.com/. 2, 3, 5, 8

[24] Gates, A. J. & Barabási, A.-L. Reproducible science of science at scale: pySciSci. Quantitative
Science Studies 4, 700–710 (2023). 2

[25] Keim, D. et al. Visual analytics: Definition, process, and challenges. In Information visualization:
Human-centered issues and perspectives (2008). 2

[26] Forscher, P. S., Cox, W. T., Brauer, M. & Devine, P. G. Little race or gender bias in an experiment
of initial review of NIH R01 grant proposals. Nature Human Behaviour 3, 257–264 (2019). URL
https://doi.org/10.1038/s41562-018-0517-y. 3

[27] Ginther, D. K. et al. Race, ethnicity, and NIH research awards. Science 333, 1015–1019 (2011). URL
https://doi.org/10.1126/science.1196783. 3

[28] Li, D. & Agha, L. Big names or big ideas: Do peer-review panels select the best science proposals?
Science 348, 434–438 (2015). URL https://doi.org/10.1126/science.aaa0185. 3

[29] Wang, J. & Shapira, P. Funding acknowledgement analysis: an enhanced tool to investigate research
sponsorship impacts: the case of nanotechnology. Scientometrics 87, 563–586 (2011). URL https:
//doi.org/10.1007/s11192-011-0362-5. 3

[30] Miao, L., Larivière, V., Wang, F., Ahn, Y.-Y. & Sugimoto, C. R. Cooperation and interdependence
in global science funding. arXiv preprint arXiv:2308.08630 (2023). URL https://doi.org/10.
48550/arXiv.2308.08630. 3

[31] Vasan, K. & West, J. D. The hidden influence of communities in collaborative funding of clinical
science. Royal Society Open Science 8, 210072 (2021). 3

22

https://doi.org/10.1017/9781108610834
https://doi.org/10.1109/MCG.2015.68
https://doi.org/10.1109/TVCG.2013.162
https://www.dimensions.ai/
https://aact.ctti-clinicaltrials.org/
https://www.overton.io/
https://patentsview.org/
https://www.altmetric.com/
https://doi.org/10.1038/s41562-018-0517-y
https://doi.org/10.1126/science.1196783
https://doi.org/10.1126/science.aaa0185
https://doi.org/10.1007/s11192-011-0362-5
https://doi.org/10.1007/s11192-011-0362-5
https://doi.org/10.48550/arXiv.2308.08630
https://doi.org/10.48550/arXiv.2308.08630


[32] Wang, Y., Jones, B. F. & Wang, D. Early-career setback and future career impact. Nature communica-
tions 10, 4331 (2019). URL https://doi.org/10.1038/s41467-019-12189-3. 3

[33] Bol, T., De Vaan, M. & van de Rijt, A. The Matthew effect in science funding. Proceedings of the
National Academy of Sciences 115, 4887–4890 (2018). URL https://doi.org/10.1073/pnas.
1719557115. 3

[34] Li, D., Azoulay, P. & Sampat, B. N. The applied value of public investments in biomedical research.
Science 356, 78–81 (2017). URL https://doi.org/10.1126/science.aal0010. 4, 9

[35] Dörk, M., Riche, N. H., Ramos, G. & Dumais, S. PivotPaths: Strolling through faceted information
spaces. IEEE Transactions on Visualization and Computer Graphics 18, 2709–2718 (2012). URL
https://doi.org/10.1109/TVCG.2012.252. 4

[36] Ye, Y., Huang, R. & Zeng, W. VISAtlas: An image-based exploration and query system for large
visualization collections via neural image embedding. IEEE Transactions on Visualization and
Computer Graphics 1–15 (2022). URL https://doi.org/10.1109/TVCG.2022.3229023. 4

[37] Wang, Y. et al. Seek for success: A visualization approach for understanding the dynamics of
academic careers. IEEE Transactions on Visualization and Computer Graphics 28, 475–485 (2022).
URL https://doi.org/10.1109/TVCG.2021.3114790. 4

[38] Yan, X. & Ma, Y. Turing Galaxy: Visualizing turing award laureates. In IEEE VIS 2021 Posters
(IEEE, 2021). 4

[39] Nobre, C., Streit, M. & Lex, A. Juniper: A Tree+ Table approach to multivariate graph visualization.
IEEE Transactions on Visualization and Computer Graphics 25, 544–554 (2019). URL https:
//doi.org/10.1109/TVCG.2018.2865149. 4

[40] Li, Z., Zhang, C., Jia, S. & Zhang, J. Galex: Exploring the evolution and intersection of disciplines.
IEEE Transactions on Visualization and Computer Graphics 26, 1182–1192 (2020). URL https:
//doi.org/10.1109/TVCG.2019.2934667. 4

[41] Dong, A., Zeng, W., Chen, X. & Cheng, Z. VIStory: Interactive storyboard for exploring visual
information in scientific publications. In Proceedings of the 12th International Symposium on Visual
Information Communication and Interaction (2019). URL https://doi.org/10.1145/3356422.
3356430. 4

[42] Guo, Z., Tao, J., Chen, S., Chawla, N. & Wang, C. SD2: Slicing and dicing scholarly data for
interactive evaluation of academic performance. IEEE Transactions on Visualization and Computer
Graphics 29, 3569–3585 (2023). URL https://doi.org/10.1109/TVCG.2022.3163727. 4

[43] Narechania, A., Karduni, A., Wesslen, R. & Wall, E. VITALITY: Promoting serendipitous discovery
of academic literature with transformers & visual analytics. IEEE Transactions on Visualization and
Computer Graphics 28, 486–496 (2022). URL https://doi.org/10.1109/TVCG.2021.3114820.
4

[44] Chen, J. et al. VIS30K: A collection of figures and tables from IEEE Visualization conference
publications. IEEE Transactions on Visualization and Computer Graphics 27, 3826–3833 (2021).
URL https://doi.org/10.1109/TVCG.2021.3054916. 4

23

https://doi.org/10.1038/s41467-019-12189-3
https://doi.org/10.1073/pnas.1719557115
https://doi.org/10.1073/pnas.1719557115
https://doi.org/10.1126/science.aal0010
https://doi.org/10.1109/TVCG.2012.252
https://doi.org/10.1109/TVCG.2022.3229023
https://doi.org/10.1109/TVCG.2021.3114790
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2018.2865149
https://doi.org/10.1109/TVCG.2019.2934667
https://doi.org/10.1109/TVCG.2019.2934667
https://doi.org/10.1145/3356422.3356430
https://doi.org/10.1145/3356422.3356430
https://doi.org/10.1109/TVCG.2022.3163727
https://doi.org/10.1109/TVCG.2021.3114820
https://doi.org/10.1109/TVCG.2021.3054916


[45] Deng, D. et al. VisImages: A Fine-Grained Expert-Annotated visualization dataset. IEEE Transactions
on Visualization & Computer Graphics 1, 1–1 (2023). URL https://doi.org/10.1109/TVCG.
2022.3155440. 4

[46] Isenberg, P. et al. Vispubdata.org: A metadata collection about IEEE Visualization (VIS) publications.
IEEE Transactions on Visualization and Computer Graphics 23, 2199–2206 (2017). URL https:
//doi.org/10.1109/TVCG.2016.2615308. 4

[47] Cao, H., Lu, Y., Deng, Y., McFarland, D. A. & Bernstein, M. S. Breaking out of the ivory tower:
A large-scale analysis of patent citations to HCI research. In Proceedings of the CHI Conference
on Human Factors in Computing Systems (2023). URL https://doi.org/10.1145/3544548.
3581108. 4

[48] Madhavan, K. et al. DIA2: Web-based cyberinfrastructure for visual analysis of funding portfolios.
IEEE Transactions on Visualization and Computer Graphics 20, 1823–1832 (2014). URL https:
//doi.org/10.1109/TVCG.2014.2346747. 4

[49] Liu, S., Cao, N., Lv, H. & Su, H. The visual funding navigator: Analysis of the NSF funding
information. In Proceedings of the 15th ACM International Conference on Information and Knowledge
Management, 882–883 (2006). URL https://doi.org/10.1145/1183614.1183778. 4

[50] Liu, S., Cao, N. & Lv, H. Interactive visual analysis of the NSF funding information. In IEEE Pacific
Visualization Symposium, 183–190 (IEEE, 2008). URL https://doi.org/10.1109/PACIFICVIS.
2008.4475475. 4

[51] Kwon, K., Majeti, D., Brian, U. & Pavlidis, I. Scholar Plot: Visualizing scientific careers at a glance.
In Proceedings of the 2nd Annual International Conference on Computational Social Science (2016).
URL https://doi.org/. 4

[52] Schimmel, S. The Public Innovations Explorer: A geo-spatial & linked-data visualization platform
for publicly funded innovation research in the united states. CUNY Academic Works (2021). URL
https://academicworks.cuny.edu/gc_etds/4409/. 5

[53] Oppermann, L. et al. Finding and analysing energy research funding data: The EnArgus system.
Energy and AI 5, 100070 (2021). URL https://doi.org/10.1016/j.egyai.2021.100070. 5

[54] NIH RePORTER. https://reporter.nih.gov/. 5

[55] Hesselberth, J. et al. nihexporter: an R package for NIH funding data. bioRxiv 033456 (2015). URL
https://doi.org/10.1101/033456. 5

[56] PlumX Metrics. https://plumanalytics.com/learn/about-metrics/. 5

[57] Ghani, S., Elmqvist, N. & Ebert, D. S. MultiNode-Explorer: A visual analytics framework for
generating web-based multimodal graph visualizations. In EuroVA: International Workshop on Visual
Analytics (2012). URL https://doi.org/10.2312/PE/EuroVAST/EuroVA12/067-071. 5

[58] Ghani, S., Kwon, B. C., Lee, S., Yi, J. S. & Elmqvist, N. Visual analytics for multimodal social
network analysis: A design study with social scientists. IEEE Transactions on Visualization and
Computer Graphics 19, 2032–2041 (2013). URL https://doi.org/10.1109/TVCG.2013.223. 5

24

https://doi.org/10.1109/TVCG.2022.3155440
https://doi.org/10.1109/TVCG.2022.3155440
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1145/3544548.3581108
https://doi.org/10.1145/3544548.3581108
https://doi.org/10.1109/TVCG.2014.2346747
https://doi.org/10.1109/TVCG.2014.2346747
https://doi.org/10.1145/1183614.1183778
https://doi.org/10.1109/PACIFICVIS.2008.4475475
https://doi.org/10.1109/PACIFICVIS.2008.4475475
https://doi.org/
https://academicworks.cuny.edu/gc_etds/4409/
https://doi.org/10.1016/j.egyai.2021.100070
https://reporter.nih.gov/
https://doi.org/10.1101/033456
https://plumanalytics.com/learn/about-metrics/
https://doi.org/10.2312/PE/EuroVAST/EuroVA12/067-071
https://doi.org/10.1109/TVCG.2013.223


[59] Dou, W., Wang, X., Chang, R. & Ribarsky, W. ParallelTopics: A probabilistic approach to exploring
document collections. In 2011 IEEE Conference on Visual Analytics Science and Technology (VAST),
231–240 (IEEE, 2011). URL https://doi.org/10.1109/VAST.2011.6102461. 5

[60] Gilbert, J. E., Burnett, M., Ladner, R. E., Rosson, M. B. & Davis, J. Applying the NSF broader
impacts criteria to HCI research. In CHI’11 Extended Abstracts on Human Factors in Computing
Systems, 459–462 (Association for Computing Machinery, 2011). URL https://doi.org/10.
1145/1979742.1979534. 5

[61] Lazar, J. et al. Workshop on engaging the human-computer interaction community with public
policymaking internationally. In CHI’13 Extended Abstracts on Human Factors in Computing
Systems, 3279–3282 (Association for Computing Machinery, 2013). URL https://doi.org/10.
1145/2468356.2479666. 5

[62] Shi, C. et al. MedChemLens: An interactive visual tool to support direction selection in interdis-
ciplinary experimental research of medicinal chemistry. IEEE Transactions on Visualization and
Computer Graphics 29, 63–73 (2023). URL https://doi.org/. 5

[63] Wang, Y., Qian, Y., Qi, X., Cao, N. & Wang, D. InnovationInsights: A visual analytics approach for
understanding the dual frontiers of science and technology. IEEE Transactions on Visualization and
Computer Graphics 30, 518–528 (2024). URL https://doi.org/10.1109/TVCG.2023.3327387.
5

[64] Nobre, C., Meyer, M., Streit, M. & Lex, A. The state of the art in visualizing multivariate networks.
In Computer Graphics Forum, vol. 38, 807–832 (2019). URL https://doi.org/10.1111/cgf.
13728. 5

[65] Vehlow, C., Beck, F. & Weiskopf, D. The state of the art in visualizing group structures in graphs.
EuroVis (STARs) 21–40 (2015). URL https://doi.org/10.2312/eurovisstar.20151110. 5

[66] Beck, F., Burch, M., Diehl, S. & Weiskopf, D. A taxonomy and survey of dynamic graph visualization.
In Computer Graphics Forum, vol. 36, 133–159 (2017). URL https://doi.org/10.1111/cgf.
12791. 5

[67] McGee, F., Ghoniem, M., Melançon, G., Otjacques, B. & Pinaud, B. The state of the art in multilayer
network visualization. In Computer Graphics Forum, vol. 38, 125–149 (2019). URL https:
//doi.org/10.1111/cgf.13610. 5

[68] Shi, L. et al. OnionGraph: Hierarchical topology+ attribute multivariate network visualization. Visual
Informatics 4, 43–57 (2020). URL https://doi.org/10.1016/j.visinf.2020.01.002. 5

[69] Holten, D. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data.
IEEE Transactions on Visualization and Computer Graphics 12, 741–748 (2006). URL https:
//doi.org/10.1109/TVCG.2006.147. 5

[70] Sedlmair, M., Meyer, M. & Munzner, T. Design study methodology: Reflections from the trenches
and the stacks. IEEE Transactions on Visualization and Computer Graphics 18, 2431–2440 (2012).
URL https://doi.org/10.1109/TVCG.2012.213. 6

25

https://doi.org/10.1109/VAST.2011.6102461
https://doi.org/10.1145/1979742.1979534
https://doi.org/10.1145/1979742.1979534
https://doi.org/10.1145/2468356.2479666
https://doi.org/10.1145/2468356.2479666
https://doi.org/
https://doi.org/10.1109/TVCG.2023.3327387
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1111/cgf.13728
https://doi.org/10.2312/eurovisstar.20151110
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.13610
https://doi.org/10.1111/cgf.13610
https://doi.org/10.1016/j.visinf.2020.01.002
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2012.213


[71] Lin, Z., Yin, Y., Liu, L. & Wang, D. Sciscinet: A large-scale open data lake for the science of science
research. Scientific Data 10, 315 (2023). 8

[72] Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology.
Nature 566, 378–382 (2019). URL https://doi.org/10.1038/s41586-019-0941-9. 8

[73] Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual
scientific impact. Science 354, aaf5239 (2016). URL https://doi.org/10.1126/science.
aaf5239. 9

[74] Beltagy, I., Lo, K. & Cohan, A. SciBERT: Pretrained language model for scientific text. In EMNLP
(2019). URL https://doi.org/10.48550/arXiv.1903.10676. arXiv:1903.10676. 10

[75] Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 (2016). URL
https://doi.org/10.1145/2939672.2939785. 10, 15

[76] SciBERT implementation. https://github.com/allenai/scibert. 10

[77] XGBoost implementation. https://xgboost.readthedocs.io/en/stable/python/. 10

[78] Görtler, J., Schulz, C., Weiskopf, D. & Deussen, O. Bubble treemaps for uncertainty visualization.
IEEE transactions on visualization and computer graphics 24, 719–728 (2017). 12

[79] Park, M., Maity, S. K., Wuchty, S. & Wang, D. Interdisciplinary papers supported by disciplinary
grants garner deep and broad scientific impact. arXiv preprint arXiv:2303.14732 (2023). URL
https://doi.org/10.48550/arXiv.2303.14732. 17

ACKNOWLEDGMENTS

We thank all members of the Center for Science of Science and Innovation (CSSI) at Northwestern
University for helpful discussions, and Alyse Freilich for editing. This work is supported by the National
Science Foundation (award number 2404035) and the Future Wanxiang Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation and the Future Wanxiang Foundation.

26

https://doi.org/10.1038/s41586-019-0941-9
https://doi.org/10.1126/science.aaf5239
https://doi.org/10.1126/science.aaf5239
https://doi.org/10.48550/arXiv.1903.10676
arXiv:1903.10676
https://doi.org/10.1145/2939672.2939785
https://github.com/allenai/scibert
https://xgboost.readthedocs.io/en/stable/python/
https://doi.org/10.48550/arXiv.2303.14732

	Introduction
	Related Work
	The Science of Science
	Scientific and Funding Data Visualization
	Network Visualization

	System Overview
	Analysis Tasks
	System Overview

	Data Analysis
	Data Sources and Preprocessing
	Measure the Funding Impact
	Scientific Investment Recommendation

	Visualization Design
	User Interface
	Impact Landscape View
	Contextual Views

	Evaluation
	Quantitative Evaluation of the Prediction Model
	Case Study
	Funding Impact for a Funding Agency
	Funding Landscape for the Visualization Community

	Expert Interview

	Discussion

