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Tenure is a cornerstone of the US academic system, yet its relationship to faculty research 
trajectories remains poorly understood. Conceptually, tenure systems may act as a 
selection mechanism, screening in high-output researchers; a dynamic incentive 
mechanism, encouraging high output prior to tenure but low output after tenure; and a 
creative search mechanism, encouraging tenured individuals to undertake high-risk work. 
Here, we integrate data from seven different sources to trace US tenure-line faculty and their 
research outputs at an unprecedented scale and scope, covering over 12,000 researchers 
across 15 disciplines. Our analysis reveals that faculty publication rates typically increase 
sharply during the tenure track and peak just before obtaining tenure. Post-tenure trends, 
however, vary across disciplines: in lab-based fields, such as biology and chemistry, 
research output typically remains high post-tenure, whereas in non-lab-based fields, such 
as mathematics and sociology, research output typically declines substantially post-tenure. 
Turning to creative search, faculty increasingly produce novel, high-risk research after 
securing tenure. However, this shift toward novelty and risk-taking comes with a decline in 
impact, with post-tenure research yielding fewer highly cited papers. Comparing outcomes 
across common career ages but different tenure years or comparing research trajectories 
in tenure-based and non-tenure-based research settings underscores that breaks in the 
research trajectories are sharply tied to the individual’s tenure year. Overall, these findings 
provide a new empirical basis for understanding the tenure system, individual research 
trajectories, and the shape of scientific output.  
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Introduction 
 
Few labor contracts are as distinctive or consequential as academic tenure in the United States1, 

which combines a fixed-term probationary period, a high-stakes “up-or-out” decision, and lifetime 

job security. Despite its central role in the US academic system and its widespread use, we lack a 

systematic understanding of how tenure shapes scientists’ productivity, impact, and research 
agendas. Understanding the relationship between tenure and research trajectories is important not 

only for academic institutions and individual researchers, but also for the broader public, given the 

role of public funding in supporting university research and the role of scientific advances in 

propelling technological developments, rising standards of living, and improved human health, 

among other benefits2–10. 

Tenure, as a lifetime labor contract, may have a strong influence on researcher incentives, choices, 

and performance11–14. On one dimension, tenure operates as an “up-or-out” contract,  creating 

powerful incentives to produce substantial, high-impact research within a fixed probationary 

period15–18. This high-stakes timeline may drive researchers to focus on achievable projects that 

demonstrate their productivity and potential. However, upon receiving tenure and its job security, 

the incentives to continue to produce high-quantity or high-impact research may weaken. This 

“moral hazard” problem may lead to reduced output or a shift toward incremental work. On the 

other hand, moral hazard considerations may be offset or overcome by a “screening” function of 
tenure19–23. Here the tenure process can be thought of as a difficult test that identifies individuals 

who, regardless of incentives, are willing and able to maintain high levels of research success 

throughout their careers. Further, despite the job security of tenure, scientific norms and incentives 

may encourage persistent effort as researchers seek continued achievements, funding, and status, 

whether through grant money, prizes, or the respect of their peers9,13,24. These contrasting forces 

raise important questions about the overall effects of tenure on research productivity across 

disciplines and career stages.   

Beyond the rate of research production, tenure may also influence the direction of research. 

Specifically, research projects are steps into the unknown, where failure is common25–27, especially 

in more “exploratory” work where researchers investigate novel terrain and payoffs are highly 

uncertain28–36. Indeed, even ultimately successful, breakthrough ideas, from mRNA vaccines to 

artificial intelligence, often follow years of failure or stagnation25–27. Tenure, by offering job security, 

creates a rare contractual arrangement that may encourage researchers to take bigger bets in their 
creative search12,13, attempting relatively novel inquiries in pursuit of transformative discoveries. 

However, while tenure’s role in encouraging risk-taking and exploration is often assumed, its actual 

effects on research trajectories remain unclear. Does tenure consistently foster exploratory work, 

or does it depend on disciplinary norms or institutional contexts? Do researchers across different 
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disciplines respond differently to tenure? And how do the patterns observed in the US tenure 

system compare to other institutional settings, such as national laboratories or European 

universities, where different employment structures prevail?  

Amidst ongoing debates about tenure’s advantages and drawbacks11,37–39, existing empirical 

studies have mainly focused on specific disciplines and selected faculty groups40–43, with 

systematic assessments limited by the lack of comprehensive longitudinal faculty data across 

scientific disciplines. In this paper, we integrate seven different data sources to assemble the 

largest and most comprehensive database of faculty rosters and research outputs to date. The core 

of this data is sourced from the Academic Analytics Research Center (AARC) [D1], which captures 

a census of about 300K faculty from 362 Ph.D.-granting institutions in the US. The dataset covers 

the time period between 2011 and 2020 and spans all scientific disciplines, allowing us to 
systematically identify tenure-line faculty members and examine how an individual’s research 

evolves before and after tenure. We focus on faculty members who experience a transition from a 

tenure-track to a tenured position between 2012 and 2015, allowing us to follow their careers for at 

least five years before and after their promotion. In addition, this time window ensures that our 

results are not affected by the COVID-19 pandemic, which had a significant impact on scientific 

careers, tenure clocks, and research production44–46. We complement AARC data [D1] with two 

additional databases [D2 and D3] that trace the entire faculty rosters of two different large research 
universities in the US, covering all faculty members who were promoted over the past 25 years. 

These data allow us to test the generalizability of the findings from the first dataset [D1] over longer 

time spans. We further integrate D1-D3 with large-scale datasets that offer information related to 

publications, citations, funding, and other relevant research measures, including SciSciNet [D4]47, 

Scopus [D5], and Dimensions [D6]. Lastly, we integrate dissertation data from ProQuest [D7] with 

D1-D6, allowing us to develop a peer group of researchers who graduated from similar PhD 

programs in the same years as the faculty members we study. Overall, we trace the research 

outputs of 12,611 faculty members across the sciences, engineering, and social sciences (see 
Materials and Methods and SI Appendix for further details on the descriptions of the datasets and 

additional validations). 
 
Results 
Tenure and Research Output 

We first focus on the relationship between tenure and publication rates. We evaluate outcomes 
over an eleven-year span, including the five years before and after tenure. We find that, on average, 

the publication rate rises steeply and steadily through the tenure track, typically peaking the year 

before tenure (Fig. 1A). After tenure, the average publication rate shows remarkable stability, 

settling near the peak achieved right before tenure (Fig. 1A). We further test whether this pattern 
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may be influenced by the research environment, such as university rank48–50, finding the same 

distinctive patterns at different university ranks (Fig. 1B). Overall, publications feature a highly 

reproducible pattern, with a sharp break occurring around the tenure year, suggesting that the 

timing of tenure substantially conditions individual output, irrespective of university rank (Fig. 1B).  

However, this pattern might also be a function of career age, as output rates shift over the life 

cycle51–57. To test this, we separate our analyses by grouping scientists with different career ages 

when attaining tenure. More specifically, we measure the number of years elapsed between the 

doctoral degree and tenure (i.e., “career age at tenure”) for each scientist and then consider the 

publication pattern around tenure for researchers with different career ages (Fig. 1C). Strikingly, 

regardless of career age, average publication rate follows the same distinctive pattern. The tenure 

transition manifests itself whether the researchers are as few as 6 years past their PhD or as many 
as 14 years past their PhD. The sharp transitions in publication rates thus do not appear related to 

career age but rather closely follow the specific tenure timing. 

The pattern documented in Fig. 1 is rather unexpected, considering two lines of evidence in prior 

literature. First, research on the lifecycle of creative output consistently shows a smooth, curvilinear 

relationship, with no sharp breaks in publication growth51–56. By contrast, when lining publication 
rates up against individual-specific tenure timing, our analysis instead reveals a sharp transition in 

output growth, timed to the individual’s change in the labor contract. Second, research on 

economics and finance professors indicates falling publication counts after tenure43. By contrast, 

our results show relatively sustained output levels post-tenure when looking at all fields together. 

This suggests potentially substantial disciplinary differences in how researchers behave after 

tenure, which we explore next.  

Field-level heterogeneity 

We classify scientists into 15 different disciplines based on their publications (see Materials and 

Methods and SI Appendix, Fig. S3). This discipline-level analysis reveals heterogeneity, with two 

broad patterns (Fig. 2). For business, economics, mathematics, sociology, and political science, 
the average trend in research output follows a rise-and-fall pattern51–54. Yet for all other disciplines, 

publication rates sustain after tenure rather than decline. In sum, publication rates rise sharply 

during the tenure track for all disciplines and peak around the year of tenure. Following the peak, 

disciplines diverge, with some showing declining publication rates while others show rates that 

stabilize at high levels. Overall, beneath the overall trends observed in Fig. 1 lies a striking 

disciplinary heterogeneity (see Fig. S2 for a field-normalized version of Fig. 1). While tenure is a 

universal feature across disciplines, these results unveil great disciplinary variation in output 
patterns after tenure.  
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Amidst the many factors that may underpin such disciplinary variations, one notable distinction lies 

in laboratory approaches to research58,59. Disciplines that follow rise-and-stabilize patterns are 

generally organized through a laboratory model of scientific production, whereas the rise-and-fall 

disciplines—business, economics, mathematics, sociology, and political science—do not 

traditionally use this laboratory model. The laboratory model is characterized by reliance on grant 
funding and substantial teamwork, often in a hierarchy where the principal investigator recruits and 

collaborates extensively with PhD students and post-doctoral researchers. To quantify these 

distinctions, we measure the median team size per paper for each discipline (SI Appendix, Section 

S4 and Fig. S4), the fraction of solo-authored papers (SI Appendix, Section S4 and Fig. S5), the 

share of papers co-authored with early career researchers (SI Appendix, Section S4 and Fig. S6), 

and the amount of funding garnered by each faculty (SI Appendix, Section S4 and Fig. S7). Across 

all these measures, we consistently see the split between the two classes of disciplines (SI 

Appendix, Section S4). We further confirm that the rise-and-stabilize patterns persist when 
considering only the lead-author papers by faculty in laboratory disciplines (Fig. S8) or different 

university ranks (Fig. S9).  

Individual-level heterogeneity  

Individual scientists may follow varied research trajectories60,61 or respond differently to incentives 

such as tenure62,63. To examine individual-level heterogeneity, we compare publications per year 

before and after tenure for each scientist and calculate the share of faculty members whose 

publication rate increases or decreases. Specifically, we group individual researchers into four 

categories according to their average publication rate after tenure: (i) zero (the individual stops 

producing papers after tenure); (ii) lower (the annual publication rate declines); (iii) higher (the 

annual publication rate grows between 0 and 100%); and (iv) more than double (the annual 
publication rate grows more than 100%). Figure 3 summarizes these results. We find that across 

all disciplines, only a tiny fraction of faculty ceases production entirely after tenure. Further, a 

substantial fraction of faculty significantly increases their average publication rate after tenure, with 

many even doubling their research output. The two classes of disciplines in Fig. 2 prove germane 

again when considering individual heterogeneity. In the rise-and-stabilize disciplines, the majority 

of researchers see increased publication rates post-tenure. In the rise-and-fall disciplines, the 

majority of faculty see decreased publication rates post-tenure.  

We further quantify differences in publication rates across individual researchers using the Gini 

index and examine how this evolves pre- and post-tenure (Fig. S10, S11). We find the publication 

rate differences across faculty members decrease as junior faculty approach tenure, reaching their 

lowest point in the year before tenure, before rising again after tenure. We repeat our analyses by 
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measuring the coefficient of variation in publication rates, observing similar patterns (Fig. S12). 

Notably, this convergence-then-divergence pattern applies to all disciplines, with the transition 

occurring in the year right before tenure. The tenure timing again marks a sharp shift in behavior. 

Together, these findings deepen our empirical and theoretical understanding of how institutional 

incentives and organizational settings interact with publication rates in an increasingly collaborative 

research environment. First, we document a sharp break in publication rates around tenure rather 

than a gradual shift over time—a pattern that persists irrespective of career age, university rank, or 

individual differences. This finding challenges the conventional view of a smooth productivity curve 

over time51–56,64–66, showing that the timing of tenure sharply conditions the rate of scientific outputs. 

Second, the scale of our data enables analysis across disciplines, revealing striking variations 

between lab-based and non-lab-based fields that were not visible in prior single-discipline or 
smaller-scale studies40–43. Finally, our results offer a more nuanced perspective on the incentives 

tied to tenure. Rather than a uniform decline in productivity43, we find that post-tenure trajectories 

vary in relation to how scientific work is organized, suggesting the importance of team structure, 

collaboration dynamics, and field-specific norms to understandings of how tenure shapes research 

careers.  

Research impact 

Publication impact, beyond publication counts, is also central to understanding researcher output, 

prompting us to examine the production of high-impact papers before and after tenure. Since the 

impact of papers is time- and field-dependent67, we measure hit papers, defined as those in the top 

5% of the distribution of citations across all papers in the same publication year and subfield (SI 

Appendix, Section S6). Figure 4A shows the pooled hit rate, computed as the ratio of the total 

number of hit papers over the total number of articles in the given year before or after tenure. The 

hit rate is found to be higher before tenure than after tenure, with a downward trend that generalizes 

across the diverse disciplines we consider. While the proportion of high-impact papers generally 

declines after tenure (see also Fig. S15A and Figs. S26-28), to better characterize post-tenure 

dynamics, it is important to distinguish between proportional and absolute changes in high-impact 

output. Accordingly, we also analyze the average number of hit papers per year across fields. As 
shown in Fig. S13, the absolute number of high-impact publications also generally declines 

following tenure, mirroring the patterns observed in the proportion-based analysis. 

We also investigate the timing of the highest-impact paper each researcher produces in the 11-

year span and compare the position with a null model where impacts are distributed randomly 

within a career56 (Materials and Methods and SI Appendix, Section S7). At this individual level, 
researchers tend to produce their most cited paper (again, normalized according to the field and 
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year) during the tenure track rather than after tenure (Fig. 4B). To ensure that the exceptional 

impact in pre-tenure years is not driven by collaborations, especially those with prior advisors, we 

repeat the analysis by considering papers published as the last author, and we arrive at the same 

conclusions (Fig. S14).  This pattern is particularly notable given the literature, which suggests that 

the timing of a scholar's most-cited work is randomly distributed within the publication 
sequence56,57. To assess this further, we replicate the approach from Sinatra et al.56, comparing 

our tenure-line sample to several "control groups" composed of researchers not specifically on a 

tenure line. For all control samples, the highest-impact paper indeed occurs randomly within the 

sequence of work they produce, highlighting the robustness of findings in the prior literature. In 

contrast, among tenure-line scholars (i.e., our sample), we observe a systematic departure from 

the random impact rule, as the most-cited work tends to appear earlier in their publication history 

(see Section S7 and Figs. S16-S17). This finding again illustrates the importance of considering 

tenure, which is a major career milestone, and the institutional context when studying careers, as 
it reveals otherwise hidden dynamics and offers new insights into individual career trajectories. 

Overall, these results are consistent with conceptualizations where tenure, as an “up-or-out” 

contract design, brings out an individual’s peak performance during the tenure track.  

Tenure and Exploration  

A perceived advantage of tenure is that job security encourages professors to take bigger risks in 

their research projects and explore novel ideas. This pursuit of novelty can take two distinct forms. 

In one form, scholars try directions that are new to them personally—a new agenda that extends 

their focus and skills. In the second form, scholars try directions that are novel for science as a 

whole—research orientations that appear unusual within the scope of prior science. Here we 

operationalize measures for both types of novelty and explore the nature of pre- to post-tenure 

transitions.  

We first group the papers of each faculty member into topics, applying a community detection 

method to the co-reference network of these papers (see Materials and Methods and SI Appendix, 

Section S8 for detailed methods)28,68. Figure 5A shows an illustrative example, where nodes 

represent the faculty member’s papers, and two papers are connected if they share common 

references. To explore linkages with tenure, we further categorize each detected community into 

one of four types: continued topic (present both before and after tenure); new topic (emerging only 

after tenure); abandoned topic (present only before tenure); or isolated topic (not connected to any 
other papers). Figure 5B continues the example in Fig. 5A, but with the publication year for each 

paper lined up against the faculty member’s tenure timing. In this example, the faculty member 
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abandoned one topic (red), explored one new topic (gold), and continued one pre-tenure research 

topic (black).  

Applying these methods to each individual in our data, Fig. 5C investigates whether and how faculty 
members reorganize their research portfolio after tenure. Our analysis indicates that faculty do tend 

to shift their directions: approximately two-thirds of faculty engage with at least one new topic in the 

five years after tenure, and approximately one-third of faculty members abandon at least one topic, 

depending on the discipline. Notably, virtually all faculty continue working on at least one topic they 

focused on before tenure. In other words, faculty almost never exhibit a complete switch in research 

directions following tenure but rather exhibit a portfolio approach in creative search.  

Overall, faculty members balance ongoing connections with their established research agenda 

(exploitation) with the pursuit of new directions (exploration), which is consistent with the 

“ambidexterity” literature on organizations69, but here applied to individual behavior. These patterns 

echo prior findings on major scientific awards, which show that after receiving prestigious prizes 

such as the Nobel Prize70 or Fields Medal71, researchers often pivot toward new topics that are less 

familiar to themselves. While tenure and major prizes differ in important ways, both represent 

inflection points that may confer greater autonomy or access to resources, facilitating exploration.  

To understand the relative focus on exploration and exploitation, we divide faculty members’ 

research outputs into continuations of pre-tenure topics versus investigations of a new topic that 

was not studied before tenure. Whereas the average publication rate tends to follow two broad 

classes across the disciplines, here we find that when we only count papers that continue the pre-

tenure agenda (black dashed line), all disciplines follow the rise-and-fall pattern (Fig. 6). This 
suggests that new agendas post-tenure (shaded areas in Fig. 6) appear to be a key feature 

sustaining output rates for the rise-and-stabilize patterns observed in Fig. 2 (see also Fig. S34).   

The second form of novelty we consider is whether faculty increasingly engage in novel research, 

not compared to their own work, but compared to prior science as a whole. Specifically, and 

following prior literature6,72,73, we measure novelty as capturing atypical combinations of prior work33 
(Materials and Methods and SI Appendix, Section S6). As we did for impact, we compute the pooled 

novelty rate and the position of the most novel paper in the 11-year sequence compared with a null 

model. Figure 7A shows that the pooled novelty rate tends to increase, indicating a higher 

propensity of faculty to be involved in novel-to-science projects after tenure. Further, the most novel 

paper within the period tends to appear after tenure (Fig. 7B). Notably, these findings contrast with 

the impact results (Fig. 4): Whereas the share of hit papers goes down with time, the novelty of the 

papers tends to go up. To account for potential temporal trends, we include a robustness check 
using a year- and subfield-normalized measure of novelty, arriving at the same conclusions (SI 
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Appendix, Section S6 Fig. S18 and Fig. S35). Note that these analyses are correlational: they 

document a robust association between the tenure phase and higher novelty, but they do not 

establish a causal effect of tenure per se. Nevertheless, these patterns are consistent with more 

exploratory work post tenure. While there is no obvious sharp break at tenure, we do see a shift 

toward more novelty and lower success rates, largely consistent with a key motivating idea of 
tenure in encouraging higher-risk search. 

To quantify the balance between exploration and exploitation in the context of creative search 

behavior, we further compute the hit and novelty rates by research agenda (i.e., new vs. continuing) 

before and after tenure. These comparisons are only feasible for faculty who start a new agenda 

after tenure (~5k scholars); hence, the results should be interpreted as conditional on successfully 

starting a new agenda post-tenure. We find that papers published before tenure in the “old” agenda 
(i.e., the topics faculty members keep after tenure) show the highest hit rate (Fig. 8A). However, 

post-tenure papers within this pre-existing agenda are substantially less impactful than pre-tenure 

papers. Interestingly, papers that belong to the new agenda (i.e., exploration) have a greater impact 

than new papers that continue the pre-tenure agenda (i.e., exploitation). Taken together, we see 

that new agendas for a faculty member tend to outperform continuations of the old agendas. This 

is consistent with faculty expanding into new areas as their prior areas deliver diminishing returns.  

Turning to novelty, we indeed find that papers on new topics post-tenure are also more novel in 

science as a whole (Fig. 8B). We confirm these trends by considering continuous outcome 

variables (avg. citation and avg. novelty, SI Appendix, Section S6 and Fig. S19) and fields with and 

without the laboratory model (SI Appendix, Section S4 and Fig. S20). Moreover, by simultaneously 

examining topic exploration and novelty rates, we also reveal that after tenure, scholars introduce 

novel ideas not only when exploring new topics but also when continuing established research 
agendas (Fig. 8B–continuing after tenure, Figs. S21-22, and Table S2). In sum, these results 

indicate that in the post-tenure period, faculty tend to undertake agendas that are both new to them 

and relatively novel in science, a potentially riskier behavior that extends the reach of science as a 

whole but produces fewer hits. This shift appears in comparisons of post-tenure with pre-tenure 

periods, highlighting evolving research directions over time. 

Institutional Comparisons 

One key question is whether the patterns we observe are specific to tenure, given that other factors 

may be at play. To further interrogate the role of tenure, we compare patterns between individual 

researchers in the tenure-line context with alternative “control groups” of researchers in different 

institutional contexts. First, we use dissertation data to identify graduates who were in similar US 
PhD programs and graduated in the same year but were not tenured by the end of our time window 
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(Fig. S23). Second, using a similar matching strategy, we identify individuals from the same PhD 

program and graduation year who moved to Europe upon graduation (where labor contracts are 

organized differently than in the US tenure system, Fig. S24A). Third, we identify the graduates of 

these similar US PhD programs who joined government organizations in the US, such as national 

labs, and we compare their research trajectories with our tenure-line faculty sample (Fig. S24B). 
Fourth, leveraging the internal HR data from two large R1 universities (D2 and D3), we identify 

faculty members employed in the same university in the same period but separate them based on 

tenure eligibility, comparing their research trajectories (Figs. S25-26).  

Across all these control groups, we find that the control researchers do not exhibit the characteristic 

publication rate shifts that we observe at tenure for the tenure sample. Rather, output measures 

tend to move in a smooth manner when studying research trajectories among these various control 
groups. Note that these controls do not imply causal relationships between tenure and research 

trajectories, especially to the extent that researchers who enter the US tenure track are a selected 

sample, and in general, it is difficult to deploy experimental or quasi-experimental approaches to 

the tenure system. Nevertheless, the results from these numerous control exercises further inform 

the distinctiveness of the shifts we see in research trajectories across tenure within US academic 

institutions. Overall, the sharp break in output appears unique to tenure timing, whether in 

comparisons among US tenure-line academics (Fig. 1) or in comparison to individual research 
trajectories in different institutional contexts (Figs. S23-26).   

Tests with Alternative Data 

We further examine the main analyses using alternative data and additional regression methods. 
Specifically, while our main analyses use publication data via Microsoft Academic Graph and 

SciSciNet [D4], we reconsider the main findings with Scopus [D5], using that database’s publication 

records and field encodings. The results prove robust to these alternative data (SI Appendix, 

Section S1, S3, S6 and Figs. S27-38). Further, we consider the main findings for publication rate, 

hit rate, and novelty rate in regressions that include individual researcher fixed effects and 

numerous paper-level controls, finding consistent results (Materials and Methods and SI Appendix, 

Section S11 and Figs. S39-43). 

Tests with Alternative Samples 

We also investigate the sensitivity of our results to the choices made in constructing our main 

sample. To do so, we consider alternative approaches to filtering raw data and creating faculty 
samples, and we test whether such choices affect the main findings. We find that our results remain 

robust across all these alternative analyses (SI Appendix, Section S1, S10, and Figs. S44-48). 



 

 

11 

 

Discussion  
 
Integrating seven different large-scale data sources, this work reveals central facts about research 

trajectories before and after tenure, demonstrating widespread turning points for individual 

scientists. Interestingly, although tenure represents a universal milestone across fields, post-tenure 

trajectories diverge in notable ways. On average, some disciplines experience declining publication 
rates, while others sustain high rates of research output. Moreover, receipt of tenure is associated 

with a shift toward more novel but less impactful work. The results prove robust across different 

datasets, controls, and assumptions. The distinctiveness of tenure patterns also appears when 

comparing tenure-line researchers with individual researchers working under different contracts or 

in different types of research institutions. 

 

The findings speak to conceptual views of tenure’s potential effects, both in the rate and direction 

of research activities, while also revealing important heterogeneity across disciplines and 
individuals. Viewed as a screening mechanism, tenure does tend to select on individuals who 

maintain robust research agendas. Viewed as a moral hazard problem, theories that emphasize 

weak incentives to sustain research output post-tenure do not appear to describe the sciences or 

researchers on average. In many disciplines, publication rates tend to stabilize at high levels. 

Further, the cessation of publishing upon tenure is exceedingly rare, whereas individuals doubling 

their pre-tenure rate of research output is far more common. At the same time, outside the 

laboratory sciences, we do see a tendency for declining publication rates after tenure. The 
disciplinary heterogeneity suggests the incentive aspects of tenure may be important yet are 

overcome by other forces in many fields. Unpacking the forces that support continued research 

output beyond tenure is an important area for future work. 

 

Other theoretical viewpoints emphasize that tenure, through the job security it provides, 

encourages exploratory, higher-risk research. The empirical evidence indicates that faculty do 

indeed tend to shift toward more novel research after tenure, but with declining hit rates, consistent 

with higher-risk research allocations. Digging deeper into research portfolios, nearly all faculty 
continue at least one pre-tenure research agenda, while more than half of faculty add a new 

agenda. The new agendas further exhibit greater novelty for science. It is thus common to see 

shifts toward research that is not just new to the individual but new to science as a whole. 

 

Overall, given the central role of tenure in the US academic system, this paper establishes a new 

empirical basis for understanding faculty research trajectories both before and after tenure. While 

the focus of this paper is on research outputs, tenure is a pivotal point in a career that often marks 

shifts in many other dimensions, including service, mentoring, administrative duties, and more. 
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Weighing the broader activities of scientists is a key area for future work. Moreover, while our 

analyses examined changes in individual research trajectories before and after tenure, future work 

may include those who did not attain tenure, examine longer-run career trajectories, and further 

investigate research trajectories in alternative institutional contexts, enabling researchers to answer 

a range of new questions. Given the prominence of research universities in generating fundamental 
knowledge and innovations that drive human progress, understanding how tenure systems 

influence research outcomes is important not only for the academic community but also for 

advancing discoveries that benefit the broader society. 

 

Materials and Methods 

Data  

This study integrates data from seven sources: AARC faculty rosters [D1], covering 314,141 

tenured and tenure-track scholars at 393 U.S. Ph.D.-granting institutions from 2011–2020; internal 
HR records from two large R1 universities, spanning 2000–2017 [D2, D3]; SciSciNet47 [D4], a data 

lake based on Microsoft Academic Graph (MAG), containing metadata on 134 million publications; 

Scopus [D5], a large citation database maintained by Elsevier; Dimensions [D6], a comprehensive 

bibliometric database curated by Digital Science; and ProQuest [D7], a comprehensive repository 

of U.S. Ph.D. dissertations. For a more extensive description of each data source see SI Appendix, 

Section S1. 

Main sample construction  

We identify tenure transitions by analyzing faculty title changes in AARC [D1], coding promotions 

from assistant to associate professor in consecutive years. To ensure complete observation 

windows and avoid COVID-19 potential bias44–46, the main sample is restricted to scholars tenured 
between 2012–2015. Scholars are linked to publication records from D4, retaining only those with 

at least one publication within five years before and after tenure and classified into a single 

discipline (excluding humanities and particle physics that may follow different incentives and 

atypical career patterns). The main D1-D4 matched sample includes 12,611 scholars across 15 

disciplines (see SI Appendix, Section S2 for additional details). For the construction of control 

groups, supplementary dataset integration, and alternative samples, please refer to SI Appendix, 

Section S10. 

Article-level metrics 
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We assess research outcomes and direction using two primary metrics: citation-based impact and 

novelty. Impact is measured by identifying "hit papers", defined as those in the top 5% of the citation 

distribution within a given subfield and year67 (see SI Appendix, Section S6 for additional details). 

Novelty is measured using two approaches. First, we use the atypicality score, where papers with 

a 10th-percentile z-score below zero—based on Uzzi et al.33 —are considered novel, relative to the 
whole scientific community. Second, to capture novelty with respect to individual research agendas, 

we apply a community detection approach28,68 using the Louvain algorithm74 on each scholar's co-

citing network over an 11-year window. In these networks, papers are nodes connected by 

weighted links based on shared references, and communities represent distinct research topics 

(see SI Appendix, Section S8). Robustness checks include alternative novelty measures (e.g., 

normalized novelty scores), alternative samples, and continuous indicators such as average 

normalized citations and novelty scores (see SI Appendix, Sections S6, S8, and S10). 

Null model and regression analysis 

To analyze the timing of high-impact or novel work, we identify each scholar’s most cited and most 

novel paper within the 11-year window around tenure, ranking publications by normalized 

citations67 (CF), or atypicality score33. We then calculate the share of scholars whose top paper 
occurs in each year relative to tenure and compare these distributions to a null model in which 

impact or novelty is randomly shuffled within individual careers56. This approach is extended using 

different data and normalized novelty percentiles (see SI Appendix, Section S7 for more details). 

To account for individual heterogeneity, we estimate fixed-effects regressions for publication count 

(Poisson), hit rate, and novelty rate (logistic), including paper-level covariates such as team size, 

number of references, lead author’s prior productivity, and publication type. Robustness checks 

include alternative specifications using OLS with normalized citation or novelty percentiles as 
outcomes (see SI Appendix, Section S11 for model specifications and additional details). 
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Figures and Tables 
 

 
Figure 1: Tenure and publication rates. (A) Articles published per year, averaged across 
researchers for each year before and after tenure. (B) Articles published per year, averaged across 
researchers, by university rank. (C) Articles published with respect to tenure year, by career age. 
Career age is defined as the number of years from Ph.D. to tenure; 85% of the academics in the 
total sample reach tenure between 6 and 14 years after completing a Ph.D. (see Fig. S1). Error 
bars are 95% CIs. This figure is based on datasets D1 and D4.   
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Figure 2: Cross-disciplinary variations in publication patterns. Each panel shows the average 
number of papers published by authors in a particular discipline. Disciplines are colored to 
distinguish two types of trends: those where publications rise and decline (purple), and those where 
they rise and stabilize (orange). These trends roughly correspond to non-lab-based and lab-based 
disciplines, respectively. Shaded areas represent 95% CIs. This figure is based on datasets D1 
and D4.  
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Figure 3: Fields and individual heterogeneity. Share of faculty who increase or decrease their 
average number of publications per year after tenure by field. Note that we exclude a negligible 
fraction of faculty who did not publish any paper in the five years before tenure. This figure is based 
on datasets D1 and D4.  
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Figure 4: Impact. (A) Pooled hit rate (number of hit papers over the total number of articles 
published by faculty in each year before and after tenure). Different versions of the hit rates, 
confirming the same trends, can be found in Fig. S15A. (B) Share of faculty who produce their most 
cited paper over our time window (ratio with respect to null model) by field. Significance at 95% C.I. 
This figure is based on datasets D1 and D4.  
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Figure 5: Tenure and research portfolio. (A) A stylized example of a co-reference network and 
community detection for a single scholar. (B) Scatter plot of topic exploration before and after 
tenure for a single faculty member. (C) Share of scholars who reorganize their research portfolio 
after tenure (New = start a new agenda; Keep = maintain parts of the “old” agenda; Abandon = 
abandon some topics explored before tenure). This figure is based on datasets D1 and D4.  
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Figure 6: Post-tenure diversification and research trajectories. Average number of papers by 
type/topic. The black dashed line indicates the average number of papers adhering to the old 
agenda. The solid line indicates the average number of papers, considering papers that belong to 
both “continuing” and “new” communities. This figure is based on datasets D1 and D4.  
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Figure 7: Novelty. (A) Pooled novelty rate by field (number of novel papers over the total number 
of articles published by faculty in our sample each year). A different version of the novelty rates, 
confirming the same trends, can be found in Fig. S15B. (B) Share of faculty who produce their most 
novel paper over our time window (ratio with respect to null model) by field. Significance at 95% 
C.I. This figure is based on datasets D1 and D4.  
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Figure 8: Post-tenure diversification, impact, and novelty. (A) Hit rate by paper type for 
scholars with a new agenda. (B) Novelty rate by paper type for scholars with a new agenda. Error 
bars are 95% CIs. This figure is based on datasets D1 and D4. 
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Supporting Text 
S1 Data sources 

The data used in the study have been integrated from the seven sources listed below:  

1. Academic Analytics Research Center (AARC) US university faculty rosters dataset [D1]. 
The raw data comprise a census of US universities’ employment records for tenured and 

tenure-track faculty members during the years between 2011 and 2020. The original faculty 

rosters include information for all Ph.D.-granting institutions in the US (393) and about 

314,141 scholars, with links to grants and scientific articles published in this time 

window. https://aarcresearch.com/ 

 

2. Internal human resources (HR) employment records for a large R1 university in the US 

[D2]. This dataset covers the years 2000-2017. 
 

3. Internal human resources (HR) employment records for a second large R1 university in the 

US [D3]. This dataset covers the years 2000-2017. 

 

4. SciSciNet1 [D4], a data lake based on Microsoft Academic Graph data. The data lake is 

curated by the Center for Science of Science and Innovation (CSSI) at the Kellogg School 

of Management at Northwestern University and is publicly available. SciSciNet includes 

information about 134M scientific publications, with a comprehensive list of additional 
metrics at the article level. https://doi.org/10.6084/m9.figshare.c.6076908.v1 

 

5. Scopus [D5], a large multidisciplinary abstract and citation database for academic research 

that was developed by Elsevier. Scopus provides detailed bibliographic information on a 

wide range of sources, including peer-reviewed journals and conference proceedings. Our 

access to the Scopus database was provided by the ICSR Lab affiliated with Elsevier. 

https://www.scopus.com 
 

6. Dimensions [D6], an extensive bibliometric database curated by Digital Science and 

available through subscription. https://www.dimensions.ai/ 

 

7. ProQuest [D7], a repository of Ph.D. dissertations that covers all US 
institutions. https://www.proquest.com/ 
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S2 Main sample construction 

We identify faculty members who have experienced a transition from a tenure-track position to a 

tenured position by following the key steps below. We also provide a breakdown of each step to 
report how many faculty members are affected by each filter (Table S1) and facilitate the 

construction of alternative samples (Section S10). 

1. We manually clean the raw faculty title strings in AARC [D1], indicating the role of each 

faculty member employed at a given institution at time t (excluding job titles not related to 

tenure-line jobs, such as “clinical assistant professor” or “research assistant professor”). 
We also exclude faculty members for whom the Ph.D. year is missing, and therefore career 

age is not well defined. 

 

2. We code the transition as a tenure promotion if a scholar’s faculty title changes from 

“Assistant Professor” at time t to “Associate Professor” at time t+1.  

 
3. We exclude all cases in which the transition is not observed in two consecutive years. As 

2011 is the first year for which we have AARC data, the first possible transition year 
included in our sample is 2012 (i.e., faculty who are recorded as “Assistant Professor” in 

2011 and transition to “Associate Professor” in 2012).  

 
4. We link publication records using journal articles listed in D1 and D4, keeping only scholars 

with at least one publication in the 11 years around tenure (from five years before to five 

years after the year of the promotion).   

 
5. We restrict the sample to scholars who obtained tenure in 2012-2015 to ensure we have 

five years after tenure for observation and to avoid the possibility that our results are 

affected by the COVID-19 pandemic2,3.  

 

6. We exclude scholars who obtained tenure in less than four years or more than 25 years 

since their Ph.D., as their records may represent errors or very atypical career paths. 

 
7. We classify scholars according to the fields of their published papers and exclude those 

who could not be classified in a single discipline.  

 
8. We exclude scholars whose primary discipline is art, history, or philosophy since scholars 

in the humanities often have different incentives and publication thresholds for tenure (e.g., 
publishing monographs and books rather than articles). We also exclude scholars whose 
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main field was particle physics because their career trajectories are largely different from 

those of all other scientists in terms of their number of articles, co-authors, and citations4. 

More details regarding field classification are presented below.  

 

The final sample integrating D1 and D4 includes 12,611 scholars active in 15 disciplines.  

Table S1: Main sample construction (additional details). The table reports each step in 
constructing the main sample, with the number of faculty included at each step. 

Step Brief description # of Faculty 
 Full AARC faculty sample (D1) 314,141 
#1 Manually clean faculty title strings and filter out individuals with missing 

or incoherent info (e.g., degree, job title) 
293,047 

#2 Identify scholars who experienced the tenure transition 48,724 
#3 Exclude cases in which the transition is not observed in consecutive 

years 
44,054 

#4 Link with bibliometric database D4 and exclude non-active scholars (i.e., 
no publication records matched in the relevant time window) 

41,246 

#5 Identify scholars who were tenured in 2012-2015  14,687 
#6 Exclude scholars tenured in less than 4 or more than 25 years 14,416 
#7 Exclude scholars who can’t be classified into a single discipline 13,474 
#8 Exclude humanities and particle physics 12,611 

 

S3 Field classification 

We assign a single field to each scholar in this sample based on the field that appears most 
frequently in her publication list. To determine this field, we use the 19 level 0 classifications in 

SciSciNet [D2] (e.g., physics, computer science, economics). To identify the high-energy physicists 

for exclusion (as mentioned above), we look at the more granular level 1 classifications in SciSciNet 

within the physics category, and we eliminate scientists whose main specialization is “particle 

physics.” In addition, we group together scholars whose primary field is geography or geology under 

a single label: geoscience (see Fig. S3 for a summary). After excluding the humanities (i.e., art, 

history, and philosophy) and merging geography and geology, we have 15 different disciplines.  

When we repeat the analyses using Scopus papers from D5 (Figs. S27-S43), we identify the field 

of each paper using the Scopus-based classification system developed by Science-Metrix. This 

system uses journal information to classify each paper in Scopus into 174 subfields. For 

multidisciplinary journals, the system uses character-based convolutional deep neural networks to 

classify at the individual paper level. All normalization of paper-level metrics for Scopus is within 

the subfield level. The sample linked to Scopus includes 12,379 scholars from 342 institutions and 
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427,498 publications. All of these scholars published at least one paper indexed in Scopus. For 

consistency, we maintain the same field classification at the author level. 

S4 Lab-based disciplines 

We further group the 15 disciplines in the sample integrating D1 and D4 into two broad categories 

based on whether they have standardized collaboration norms, which typically mean larger team 

sizes, hierarchical team structures, reliance on grants, and organization in research labs5. 

Business, economics, mathematics, sociology, and political science have historically been fields in 

which individual (or small team) work is most prevalent, although the organization of the scientific 
workforce is now universally moving toward larger team sizes6,7. All other fields in our sample are 

generally organized in larger teams or laboratories with clear divisions of labor.  

Previous literature indicates that field collaboration norms are often correlated with team size, as 

disciplines that tend to have large teams are also most likely to be characterized by other 

collaboration norms. To test whether this distinction can be measured empirically, we classify fields 
using several metrics that help us understand the nature of such differences. First, we compute the 

median team size per subfield, using a more granular level of subfield classification from AARC 

that comprises 170 different subfields. Then, we categorize subfields into two groups, one with a 

median team size larger than three and one with a median team size of three or less. Results 

confirm that the subfields broadly fall in the same, more general classification categories used 

above, and the publication rate patterns presented in Fig. 2 hold (see Fig. S4). 

Second, a greater number of solo-authored papers in a field is indicative of a field with different 

collaboration norms. Despite the pervasive decline in the incidence of solo-authored papers, it is 

still relatively more common for scientists to publish individual works in certain fields. Indeed, the 

share of solo-authored papers also separates fields into two groups that are broadly consistent with 

our classification (see Fig. S5). 

Although a larger team size is an explicit proxy for distinguishing fields characterized by labs and 

collaboration norms, the organization of scientific work can differ in other critical dimensions and 

entail field-dependent trade-offs8. For instance, if organizational differences result in alternative 

hierarchical structures, fields with collaboration norms will be distinguished by a larger share of 

articles co-authored with early-career researchers (e.g., Ph.D. students and postdocs). To test this 

metric, we determine the number of articles that have at least one author with less than two years 

of experience since their first publication, and we compare the share across the 15 fields. Results 
confirm a clear separation of the fields into two groups (see Fig. S6).  
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Some disciplines organized through labs rely significantly more on grants. Therefore, as an 

additional measure to quantify collaboration norms and lab structure, we look at the share of 

scholars who received at least one grant after tenure. Once again, this analysis allows us to capture 

the difference between fields with and without collaboration norms. Mathematics is a notable 

exception in this analysis, as individual grants (especially from the National Science Foundation) 
are particularly common in this field (see Fig. S7). 

S5 Collaboration and university rank 

The evidence presented in Fig. 2 shows that publication trajectories are characterized by two 
different patterns. To verify the robustness of our results and the distinction between fields with and 

without collaboration norms, we recompute the mean publications per year, only counting 

researchers’ articles for which they are lead authors (Fig. S8). In other words, for all scholars active 

in fields with collaboration norms, we only consider articles they published as the last author. We 

do not, however, apply this correction to fields without collaboration norms, as alphabetical listings 

of authors are common in these disciplines. Figure S8 confirms the distinction between the two 

broad classes. 

Differences among the institutions where faculty work could also affect their incentives and 

publication rates, and these differences may not be evident in these average trends. To address 

this concern, we group scientists according to the rank of the institution where they attained tenure, 

using university rankings to classify institutions as in Wapman et al.9 Figure S9 shows that the 

pattern in research output is consistent, irrespective of the institution's rank. 

S6 Impact measures 

We approximate the quality of scientific articles by looking at the number of citations, as is standard 

in the literature. However, citations are both time- and field-dependent. Therefore, we define “hit 
papers” as papers in the top 5% of the citation distribution for a given subfield (based on level 1 

classifications in SciSciNet) in a given year (Fig. 5A). Note that these rates are still relatively high 

compared with the baseline of 5%. Two reasons for these high levels are that, first, our sample only 

includes faculty who eventually received tenure during our observation period, and, second, we 

only consider US universities, which tend to have higher hit paper rates on average. 

We define “novel papers” as papers with an atypicality score lower than zero. The atypicality score, 

introduced by Uzzi et al.10, is based on pairwise combinations of journals in each paper's 

bibliography and normalized against a randomized citation network. More in detail, this method 

assigns a z-score to each pair of cited journals, resulting in a distribution of z-scores per paper. 

The atypicality score, defined as the 10th-percentile z-score, captures "tail novelty"—that is, the 
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extent to which a paper draws on unusually combined knowledge. Novelty rates are computed as 

for hit rates: the number of novel papers over the total number of papers published by scholars in 

our sample (Fig. 7A). We use a different definition of hit rate and novelty rate in Fig. S15, in which 

we compute the average hit/novelty rate per person per year instead of considering a pooled 

version. In this analysis, we only include scholars who publish at least one paper each year to avoid 
missing data imputation. Results for this smaller sample (N=4,051) confirm the trends presented in 

the main text (downward for hit, Fig. S15A; upward for novelty, Fig. S15B).  

We further validate the novelty results using a normalized measure (by year and subfield). We 

adopt the novelty measure proposed by Lee et al.11, which, contrary to the atypicality score, can 

be adjusted to control for temporal trends and it is straightforward to interpret in its normalized 

formulation. Specifically, to calculate a paper 𝑝 ’s novelty, we first extract its reference list 

comprising 𝑛 publications in academic journals or conferences. We then create a set of 𝐶!" non-

sequential pairwise combinations of the 𝑛 publications and count the number of times each venue 

pair appears in this set. We repeat these steps for all publications in the same subfield and year as 

𝑝. We then aggregate the total number of times each venue pair occurs in these publications’ 

references. A venue pair (i, j)’s commonness 𝐶#$ in this subfield-year set is defined as: 

𝐶#$ =	
𝑁#$𝑁
𝑁#𝑁$

 

where 𝑁#$ is the number of venue pairs (i, j), 𝑁 is the total number of all venue pairs, and 𝑁# is the 

number of venue pairs including venue i. We select the 10th percentile of 𝑝’s reference venue pairs’ 

commonness values to represent 𝑝’s novelty. We calculate such novelty values for research papers 

published between 2006 and 2020, sort the novelty values for publications in the same subfield 

and year in descending order, and normalize the novelty values into a percentile rank. Thus, unlike 

the atypicality score, a higher rank for this measure represents higher novelty. We apply the above 

methodology to both D4 (i.e., SciSciNet) and D5 (i.e., Scopus). The Scopus dataset includes a 

separate list of articles and covers a different set of journals, further reinforcing the robustness of 
our results. We define novel papers as papers in the top 10% of the normalized novelty distribution 

(Figs. S18, S35, S36, S37, S41, S43). 

As an alternative to hit and novelty rates, we consider the continuous versions of these measures. 

Specifically, in Fig. S19A, we consider the average natural logarithm of CF (normalized citations 

for subfield and year) and the average novelty score (Fig. S19B) measured as in Yang et al.12  
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S7 Null model 

For each scientist in our sample, we rank papers according to the number of normalized citations 

by subfield and year (CF) or the atypicality score to investigate the relative position of the most 
impactful and novel works within the 11-year period in individual careers. Next, we count the share 

of faculty members who produced their most cited or most novel paper in a given year relative to 

the year they received tenure. To control for individual publication patterns, we construct a null 

model by reshuffling (100 times) the measure of interest (CF or atypicality) within each individual 

career, and we compute the expected share of faculty who produce their most cited (or novel) 

paper in any given year (Fig. 4B, Fig. 7B). Figure S18B and Fig. S35B follow the same approach 

but use the normalized novelty percentile. 

We use two complementary strategies to test whether scholars in our sample deviate from the 

standard prediction of the random impact rule13. First, we draw a random sample from D4, selecting 

scholars with at least 20 publications (the original analysis considers longer publication sequences–

N ~ 50) and keeping the same field distribution and first publication year as that in the original (i.e., 

tenure-line) sample. We repeat this sampling strategy five times to ensure that selection does not 

drive any observed patterns. Second, we consider a different type of control group, including 
scholars employed in governmental organizations, such as national labs (see Section S10), with at 

least 20 publications. Scientists working outside the academic environment–and not aligned 

against their time of tenure–are subject to different incentives, making them a valuable additional 

comparison for testing a departure from the random impact rule. We then calculate the relative 

position (N*/N) of the most-cited paper, normalized by year and subfield, across all samples. As 

shown in Figure S16, in every sample except for the tenure sample, the highest-impact paper 

occurs at random, as predicted by the random impact rule. Kolmogorov–Smirnov tests confirm the 
observed differences are statistically significant. To provide additional context for this result, we 

analyzed the broader scientific population in D4 (i.e., SciSciNet), focusing on researchers with the 

same minimum publication and career age (i.e., first publication year) as our tenure-line faculty. Of 

the total number of researchers that meet these criteria, our tenure-line sample represents only 

0.6%. Within this larger population, the random impact rule continues to hold (Fig. S17), highlighting 

that the deviation we observe is specific to the U.S. tenure setting. 

S8 Community detection 

To investigate the exploratory behaviors of faculty members pre- and post-tenure, we employ 

Louvain14, a widely used community detection method in network science, on the co-citing network 

for the 11-year period for each faculty member. Specifically, we construct weighted undirected 
networks for individual faculty members, with papers serving as nodes, and links connecting papers 
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that share at least one common reference. The number of shared references between the 

connected papers determines the weights of these links. It is worth noting that the networks may 

contain isolated nodes, representing papers that do not share any common references with other 

papers in the network. Following the community detection process and prior literature15,16, each 

paper is assigned to a community representing a specific topic, while isolated papers are not 
assigned any topics. In order to detect meaningful communities, we only consider scholars who 

published at least five papers before tenure and five papers after tenure. The resulting sample 

[D1+D4] comprises 8,963 scholars. When we repeat the analysis using Scopus [D1+D5], the 

sample comprises 9,318 scholars and 405,522 publications. 

S9 Continuous variable for topic exploration 

To quantify the exploration of new topics that diverge from prior work, we also measure the topic 

dissimilarity of a paper, which shows the extent to which a scholar's paper topic deviates from the 

topics explored in their previous five years of research papers (Fig. S38). Topic dissimilarity directly 

measures the distinctiveness of a paper’s topic from the topics of the author’s previous works. For 

each scholar, we first collect all papers authored by the scholar in the previous five years. Then, 

for a paper 𝑝 in this set, we concatenate its title and abstract into a text string that represents p’s 

topic. We ignore papers with too little text (word count <= 5). We convert the text to lowercase, 

remove special characters and numbers, lemmatize each word, and remove common English stop 

words, as well as short words (length < 3 letters) and generic words that are commonly used in 
various disciplines. The generic word list contains words that are ranked in the top 3% for highest 

inverse document frequency (IDF) (e.g., conclusion, level, and improve). We train a Word2Vec 

model based on these processed texts and convert each text into a 128-dimensional vector. The 

topic dissimilarity of a paper is defined as the average cosine distance between each paper in our 

sample and its predecessor paper: 

𝐷%&'#( = 1 − )∙+
|)|∙|+|

. 

S10 Control groups and additional validations 

To isolate the effect of tenure on scientific production, we move beyond the career age comparison 

(Fig. 1B), and we construct a first control group by looking at faculty members who did not get 

tenure in our time frame. More specifically, we combine three different datasets: AARC [D1], 

Dimensions [D6], and ProQuest [D7]. AARC [D1] allows us to identify faculty members who attain 

tenure in the period under consideration, Dimensions [D6] enables us to retrieve their publications 
lists, and ProQuest [D7] allows us to find individuals with the same Ph.D. year and subfield who did 

not receive tenure during our time frame. Then, we match observations one-to-one on the Ph.D. 



 

 

10 

 

year and subfield to compare treated faculty (those who obtained tenure) with control individuals 

who were not tenured by the end of our time window. Our final sample for this analysis includes 

~1,500 faculty members for each group. Figure S25A shows the difference in publication patterns 

between faculty who received tenure in the time window and the matched faculty who did not attain 

tenure in the same period. Figure S25B shows that tenure also represents a great divide in terms 
of output differences among individual scholars, as we note a V-shaped pattern around the actual 

tenure year for those who received tenure. We do not find this behavior in the control group. These 

results confirm the critical impact of tenure on both the mean and variance of scientific production 

over time.  

We use a similar matching strategy to construct two additional control groups. First, for each 

individual we study in the U.S. tenure system, we identify scholars who received a Ph.D. in the US 
in the same year and field but moved to Europe—the UK, Germany, or France, where the tenure-

track system is not as strong or as common as in the US. And second, we identify scholars who 

received a Ph.D. in the US in the same year and field but now work for a government agency within 

the US. Figure S26 presents a comparison of faculty who received tenure in the US and these two 

control groups, providing additional evidence that tenure presents distinctive shapes in publication 

trajectories. 

We also use internal HR data [D2 and D3], including faculty rosters and employment records, from 

two large R1 universities in the US to validate the trends described in Fig. 1. We gather information 

on all faculty members who obtained tenure in the last 20 years and evaluate the average 

publication trajectory, finding a turning point around tenure (Fig. S25A, Fig. S26A). Note that we do 

not have to rely on faculty titles to determine tenure status in these data because the employment 

records for this sample make it clear if a position is tenured or not.  

Using these internal employment records, we further refine our analysis to evaluate the difference 

in publication trajectories between tenure-track and non-tenure-eligible positions over time. In 

particular, we compare the publication trajectory of scholars in tenure-line positions who are 

tenured at year 6 or 7 with non-tenure-track employees during their first 11 years of employment at 

the institution. Figure S25B-C and Fig. S26B-C show the average patterns for these two groups, 
[D2] and [D3], respectively. 

To ensure our findings are robust to sample construction choices, we conduct additional checks 

using two alternative samples: the "extended main sample" and the "alternative sample." First, we 

extend the publication records of faculty tenured in 2012, 2013, and 2014 up to 2020 to capture a 

longer post-tenure window. This allows us to verify consistency across cohorts, confirming in Fig. 
S44 the sharp shift around tenure. Figure S47 further shows that lab vs. non-lab differences hold 
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regardless of tenure year. Second, we create a broader alternative sample, including all faculty 

tenured between 2012 and 2020, excluding only humanities scholars for classification consistency. 

Although noisier by construction (many filters and constraints removed), this larger sample 

(~38,000) produces remarkably stable results. Figure S48 reaffirms the clear publication shift near 

tenure, while Fig. S47 confirms key trends in publication, impact, and novelty rates. Finally, Fig. 
S48 highlights disciplinary differences, aligning with our main findings. 

S11 Regression models 

We estimate the following models to further control for individual heterogeneity in publication rates 
and other potentially relevant factors for hit and novelty rates. In particular, for publication rates, we 

estimate the following model: 

𝑦#- = 𝛽. + ∑ 𝛽%𝐼-/%%0. + 𝜎# + 𝜖#$, 

where 𝑦#- represents the number of publications for scholar 𝑖 in year 𝜏. 𝑡 is a specific year relative 

to tenure ranging from -5 to 5, excluding the base year 0. 𝛽% is the coefficient representing the effect 

of being in year 𝑡 relative to the tenure year. 𝐼-/% is an indicator function equal to 1 if 𝜏 = 𝑡 and 0 

otherwise. 𝜎# is the scholar fixed effect to control for different publication rates across scholars. We 

use a Poisson regression since the dependent variable is a count (i.e., number of publications). 

Standard errors are clustered at the individual level (Fig. S39). 

In addition, we estimate variations of the following model for hit (novelty) rates: 

𝑦#$- = 𝛽. + ∑ 𝛽%𝐼-/%%0. + Γ𝑋$ + 𝜎# + 𝜖#$-, 

where 𝑦#$- is an indicator equal to 1 if paper 𝑗 written by scholar 𝑖 at time 𝜏 is a hit (top novel) paper, 

and 0 otherwise. Hit and novel papers are normalized by year and subfield as described in section 

S6. 𝑋$ is a series of paper-level covariates including the number of authors, number of references, 

leading authors’ previous average number of publications, whether the scholar is the leading 

author, and the publication type (e.g., journal/conference). Dealing with binary dependent variables, 

we use a logistic regression approach (Figs. S40-S43). However, as an alternative specification, 
we also estimate an OLS with citation or novelty percentile as dependent variables (Figs. S42-

S43).  
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Supporting Figures and Tables 
 

 

Figure S1: Time to tenure. (A) Distribution of time to tenure, measured in years from Ph.D. to 
tenure. In Fig. 1B (main text), we show average publication patterns for faculty who received tenure 
between 6 and 14 years after receiving their Ph.D. (85% of the sample). (B) Distribution of time to 
tenure by field. Purple indicates fields that are non-lab-based; orange indicates lab-based fields. 
This figure is based on datasets D1 and D4.  
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Figure S2: Tenure and field-normalized publication rates. (A) Field-normalized articles 
published per year, averaged across researchers for each year before and after tenure. (B) Field- 
normalized articles published per year, averaged across researchers, by university rank. (C) Field- 
normalized articles published with respect to tenure year, by career age. Career age is defined as 
the number of years from Ph.D. to tenure; 85% of the academics in the total sample reach tenure 
between 6 and 14 years after completing a Ph.D. (see Fig. S1). Error bars are 95% CIs. This figure 
is based on datasets D1 and D4. 
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Figure S3: Field distribution. Number of faculty members in each field. Scholars are classified 
into a single field according to their publications' most common field code. Field classification 
follows level 0 classifications in SciSciNet. Geoscience is the combination of geology and 
geography. Purple indicates fields that are non-lab-based; orange indicates lab-based fields. This 
figure is based on datasets D1 and D4. 
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Figure S4: Alternative field classification and team size. (A) Alternative field classification (170 
subfields) based on the median team size (large teams have more than 3 people, and small teams 
have 3 people or fewer than 3 people). (B) Average number of papers published per year by field 
category (large team fields vs. small team fields). Shaded areas represent 95% CIs. This figure is 
based on datasets D1 and D4. 
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Figure S5: Solo-author papers. Share of single-author papers by field. This figure is based on 
datasets D1 and D4.  
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Figure S6: Collaboration with early-career researchers. Share of papers co-authored with early-
career researchers by field (i.e., authors with less than two years of experience since their first 
publication). This figure is based on datasets D1 and D4.  
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Figure S7: Reliance on grants. Share of faculty awarded at least one grant after tenure by field. 
This figure is based on datasets D1 and D4.  
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Figure S8: Mean publications per year as lead author. Each panel shows the average number 
of papers a scholar published as lead (i.e., last) author per year by field. We only consider the lead 
(last) authors for fields characterized by collaboration norms because alphabetical listings of 
authors are common in fields in which collaboration norms are not the standard. For these fields 
(first row), we tally all papers as in Fig. 2 (main text). Shaded areas represent 95% CIs. This figure 
is based on datasets D1 and D4.  
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Figure S9: Mean publications per year by university rank. Average number of papers per year 
by university rank. Top 20 (dot and dashed lines) vs. all other institutions (square and solid lines). 
As in Wapman et al., we use university rankings to classify institutions9. We exclude scholars with 
multiple affiliations at the time of tenure. Error bars are 95% CIs. This figure is based on datasets 
D1 and D4.  
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Figure S10: Dispersion in publication rates over time. Gini index of the number of papers per 
year by individual researchers over the 11-year time window, by field. This figure is based on 
datasets D1 and D4. 
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Figure S11: Lorenz curve before tenure vs. after tenure. Lorenz curve of the number of papers 
for year -1 and year 5 (relative to tenure) by field. This figure is based on datasets D1 and D4.  
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Figure S12: Dispersion over time - alternative to Gini. Coefficient of variation (CV) of the number 
of papers over the 11-year time window by field. This figure is based on datasets D1 and D4.  
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Figure S13: High-impact publication patterns by field. Each panel shows the average number 
of hit papers published by authors in a particular discipline. Error bars represent 95% CIs. This 
figure is based on datasets D1 and D4 (main sample). 
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Figure S14: Most cited paper as lead author. Share of faculty who produce their most cited paper 
during our time window (ratio with respect to null model) by field. Significance at 95% C.I. This 
figure is based on datasets D1 and D2.  
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Figure S15: Average hit and novelty rate. (A) Average hit rate by field for faculty who publish at 
least one paper per year (i.e., excluding faculty with non-finite values). (B) Average novelty rate by 
field for faculty who publish at least one paper per year (i.e., excluding faculty with non-finite 
values). Lines represent linear fits with 95% CIs. This figure is based on datasets D1 and D4.  

environmental
science geoscience materials

science engineering physics

chemistry biology medicine psychology computer
science

business economics mathematics sociology political
science

-5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5

10%

20%

30%

40%

10%

20%

30%

40%

10%

20%

30%

40%

Relative Time to Tenure

Av
g.

 h
it 

ra
te

excluding people with non-finite values

A

environmental
science geoscience materials

science engineering physics

chemistry biology medicine psychology computer
science

business economics mathematics sociology political
science

-5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5

20%
30%
40%
50%
60%
70%

20%
30%
40%
50%
60%
70%

20%
30%
40%
50%
60%
70%

Relative Time to Tenure

Av
g.

 n
ov

el
ty

 ra
te

excluding people with non-finite values

B



 

 

27 

 

 

Figure S16: Random impact rule in different settings. Each panel shows the cumulative 
distributions (C) of relative positions (N*/N) of the most-cited paper within the sequence of all 
papers for the tenure sample (black line) and different control groups (red line). According to 
the random impact rule, the most-cited paper occurs randomly within the sequence of papers 
(dashed line). (A-E) Five different random samples drawn from D4 keeping the same field 
distribution and first publication year as the original (i.e., tenure) sample. (F) Control group 
based on scholars affiliated with government agencies (additional details in section S10). KS 
test p-value reported within each panel. This figure is based on D1, D4, D6, and D7. 
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Figure S17: Random impact rule in general scientists’ population. Cumulative distributions (C) 
of relative positions (N*/N) of the most-cited paper within the sequence of all papers for all authors 
in D4 with at least 20 papers and first publication year as in the tenure-line sample. According to 
the random impact rule, the most-cited paper occurs randomly within the sequence of papers (grey 
line). This figure is based on D1, D4, D6, and D7.  
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Figure S18: Normalized novelty. (A) Pooled novelty rate (number of novel papers over the total 
number of articles published by faculty in each year before and after tenure). Novel papers are 
defined as papers in the top 10% of the novelty distribution for a given year and subfield. (B) Share 
of faculty who produce their most novel paper over our time window (ratio with respect to null model) 
by field. Significance at 95% C.I. Novelty measure follows Lee et al.11 (i.e., time- and subfield-
normalized rank). This figure is based on datasets D1 and D4.  
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Figure S19: Post-tenure diversification, impact, and novelty – continuous outcomes. (A) 
Average citations by paper type for scholars with a new agenda. (B) Average novelty score per 
paper type for scholars with a new agenda. Error bars are 95% CIs. This figure is based on datasets 
D1 and D4. 
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Figure S20: Post-tenure diversification, impact, and novelty by lab model. (A) Hit rate by 
paper type for scholars with a new agenda in fields with and without lab models. (B) Novelty rate 
by paper type for scholars with a new agenda in fields with and without collaboration norms. Error 
bars are 95% CIs. This figure is based on datasets D1 and D4.  
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Figure S21: Post-tenure diversification and novelty. (A) Novelty rate by paper type for scholars 
with a new agenda (as in Fig. 8B with three comparison groups and significance levels). (B) Novelty 
rate by paper type for scholars with a continuing agenda. Paired t-test. Error bars are 95% CIs. 
Significance levels: **** p ≤ 0.0001 *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05. This figure is based on 
datasets D1 and D4.  
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Figure S22: Post-tenure diversification and novelty by lab model. Novelty rate by paper type 
for scholars with a continuing agenda in disciplines with lab vs. non-lab model. Paired t-test. Error 
bars are 95% CIs. Significance levels: **** p ≤ 0.0001 *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05. This figure 
is based on datasets D1 and D4.  
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Table S2: Regression Results for novelty within subfields or journals. Linear Probability Model 
(LPM) and Logit Model estimates of the association between tenure and the likelihood of publishing 
novel work (atypicality < 0). The key independent variable is a post-tenure indicator. Models include 
individual fixed effects and either subfield (level 1 classification in SciSciNet) or journal fixed effects 
to control for variation across individuals and publication contexts. 

 LPM 
(Novelty) 

LOGIT 
(Novelty) 

LPM 
(Novelty) 

LOGIT 
(Novelty) 

Tenure 0.0158*** 
(0.0018) 

0.0822*** 
(0.0097) 

0.0069*** 
(0.0018) 

0.0402*** 
(0.0107) 

Individual fixed effects Yes Yes Yes Yes 
Subfield fixed effects Yes Yes No No 
Journal fixed effects No No Yes Yes 
S.E.: Clustered by: Individual by: Individual by: Individual by: Individual 
Observations 407,137 396,573 405,207 382,724 
Squared Cor. 0.24063 0.22213 0.34569 0.31652 
Pseudo R2 0.18968 0.17683 0.29226 0.25986 
BIC 645,420.2 601,475.7 765,338.4 653,877.2 

Note: Each observation is a publication from faculty in our sample. The dependent variable is a 
dummy variable equal to one if the publication is novel (i.e., atypicality score <0). The key 
independent variable is a dummy (i.e., "Tenure"), equal to one for publications after tenure and 
zero otherwise. Significance level: 0 '***' 0.001 '**' 0.01 '*' 0.05.  
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Figure S23: Control group. (A) Average number of papers per year by treatment group. Shaded 
areas represent 95% CIs. (B) Gini index of the number of papers by treatment group over the 11-
year time window. This figure is based on datasets D1, D6, and D7.  
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Figure S24: Additional control groups. (A) Average number of papers per year over the 11-year 
time window by treatment group (EU affiliated-scholars). (B) Average number of papers over the 
11-year time window by treatment group (scholars affiliated with government agencies). Error bars 
are 95% CIs. This figure is based on datasets D1, D6, and D7.  
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Figure S25: HR records [D2] analysis. (A) Average number of papers per year over the 11-year 
time window for all faculty members who obtained tenure between 2007 and 2017. (B) Average 
number of papers for faculty tenured at year 6 (i.e., modal year) vs. non-tenure-track control group 
over the first 11 years of employment. (C) Average number of papers for people tenured at year 7 
(i.e., second modal year) vs. non-tenure-track control group over the first 11 years of employment. 
Error bars are 95% CIs. Observation counts (N) at the bottom of each panel. This figure is based 
on dataset D2.  
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Figure S26: HR records [D3] analysis. (A) Average number of papers per year over the 11-year 
time window for all faculty members who obtained tenure between 2000 and 2017. (B) Average 
number of papers for faculty tenured at year 7 (i.e., modal year) vs. non-tenure-track control group 
over the first 11 years of employment. (C) Average number of papers for people tenured at year 6 
(i.e., second modal year) vs. non-tenure-track control group over the first 11 years of employment.  
Error bars are 95% CIs. Observation counts (N) at the bottom of each panel. This figure is based 
on dataset D3.  
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Figure S27: Publication rates (based on Scopus) with respect to tenure year by career age. 
Career age is defined as the number of years from Ph.D. to tenure. Replication of Fig. 1C. This 
figure is based on datasets D1 and D5.  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.5

−1

−0.5

0

0.5 Time to tenure
(years since Ph.D.)

6

7

8

9

10

11

12

13

14

Year since PhD

M
ea

n 
pu

bl
ic

at
io

ns
 w

rt 
te

nu
re

 y
ea

r



 

 

40 

 

 

Figure S28: Publication rates (based on Scopus), averaged across researchers, by 
university rank. Replication of Fig. 1B. This figure is based on datasets D1 and D5.  
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Figure S29: Cross-disciplinary variations in publication patterns based on Scopus. Each 
panel shows the average number of papers per year by discipline, distinguishing two broad classes. 
Replication of Fig. 2. This figure is based on datasets D1 and D5.  
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Figure S30: Pooled hit rate based on Scopus. Pooled hit rate is defined as the number of hit 
papers over the total number of articles published by faculty in each year before and after tenure. 
Replication of Fig. 4A. This figure is based on datasets D1 and D5.  
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Figure S31: Average hit rate based on Scopus. Average hit rate by field for faculty who publish 
at least one paper per year. Replication of Fig. S15A. This figure is based on datasets D1 and D5.  
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Figure S32: Most cited paper based on Scopus. Share of faculty who produce their most cited 
paper during our time window (ratio with respect to null model) by field. Significance at 95% C.I. 
Replication of Fig. 4B. This figure is based on datasets D1 and D5.  
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Figure S33: Tenure and research portfolio based on Scopus. Share of scholars who reorganize 
their research portfolio after tenure. Replication of Fig. 5C. This figure is based on datasets D1 and 
D5.  
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Figure S34: Post-tenure diversification and research trajectories based on Scopus. Average 
number of papers by type/topic. The black dashed line indicates the average number of papers 
adhering to the old agenda. The solid line indicates the average number of papers that belong to 
either the “continuing” or the “new” communities. Replication of Fig. 6. This figure is based on 
datasets D1 and D5.  
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Figure S35: Normalized novelty based on Scopus. (A) Pooled novelty rate based on Scopus 
data by field. The novelty rate is defined as the number of novel papers over the total number of 
articles published by faculty in our sample each year. Novel papers are defined as papers in the 
top 10% of the novelty distribution for a given year and subfield. (B) Share of faculty who produce 
their most novel paper over our time window (ratio with respect to null model) by field. Significance 
at 95% C.I. Novelty measure follows Lee et al.11 (i.e., time- and subfield-normalized rank). This 
figure is based on datasets D1 and D5.  
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Figure S36: Average novelty rate based on Scopus. Average novelty rate by field for faculty 
who publish at least one paper per year (i.e., excluding faculty with non-finite values). Replication 
of Fig. S15B. Novel papers are defined as the top 10% of papers by novelty score. This figure is 
based on datasets D1 and D5.  
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Figure S37: Post-tenure diversification, impact, and novelty based on Scopus. (A) Hit rate by 
paper type for scholars with a new agenda. (B) Novelty rate by paper type for scholars with a new 
agenda. Hit papers are defined as the top 5% of papers published the same year in the same field. 
Novel papers are defined as the top 10% of papers by novelty score. Replication of Fig. 8. This 
figure is based on datasets D1 and D5.  
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Figure S38: Average topic dissimilarity based on Scopus. This figure is based on datasets D1 
and D5.  
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Figure S39: Mean publications per year based on Scopus. The effects are estimated using a 
Poisson regression and include individual fixed effects. Reference year 𝑡 = 0. This figure is based 
on datasets D1 and D5.  
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Figure S40: Log odds for hit papers based on Scopus. The effects are estimated using a logistic 
regression, including individual fixed effects and controls. Reference year 𝑡 = 0. This figure is 
based on datasets D1 and D5.  
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Figure S41: Log odds for novel papers based on Scopus. The effects are estimated using a 
logistic regression and include individual fixed effects and controls. Reference year 𝑡 = 0. This 
figure is based on datasets D1 and D5.  
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Figure S42: Mean citation percentile based on Scopus. The effects are estimated using an OLS 
regression, including individual fixed effects and controls. Reference year 𝑡 = 0. This figure is 
based on datasets D1 and D5.  
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Figure S43: Mean novelty percentile based on Scopus. The effects are estimated using an OLS 
regression, including individual fixed effects and controls. Reference year 𝑡 = 0. This figure is 
based on datasets D1 and D5. 
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Figure S44: Tenure cohorts and publication rates. Articles published per year, averaged across 
researchers, by tenure cohort (i.e., tenure year). This figure is based on the extended main sample 
(D1 and D4). 
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Figure S45: Tenure cohorts and publication rates by lab model. Average number of papers 
per year by tenure cohort (i.e., tenure year). Line types indicate different cohorts (from 2012 to 
2015). This figure is based on the extended main sample (D1 and D4). 
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Figure S46: Tenure cohorts and publication rates for the alternative sample. Average number 
of papers per year by tenure cohort (i.e., tenure year). Colors indicate different cohorts (from 2012 
to 2020). This figure is based on the alternative sample (D1 and D4). 
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Figure S47: Publication, hit, and novelty rates for the alternative sample. (A) Articles published 
per year, averaged across researchers, for each year before and after tenure. (B) Pooled hit rate 
(number of hit papers over the total number of articles published by faculty in our sample each year 
before and after tenure). (C) Pooled novelty rate (number of novel papers over the total number of 
articles published by faculty in our sample each year before and after tenure). This figure is based 
on the alternative sample (D1 and D4).  
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Figure S48: Cross-disciplinary variations in publication patterns based on the alternative 
sample. Each panel shows the average number of papers published by authors in a particular 
discipline. Shaded areas represent 95% CIs. This figure is based on alternative sample (D1 and 
D4).  
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