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Quantifying the Alignment of Graph and Features
in Deep Learning

Yifan Qian , Paul Expert , Tom Rieu, Pietro Panzarasa , and Mauricio Barahona

Abstract— We show that the classification performance of
graph convolutional networks (GCNs) is related to the alignment
between features, graph, and ground truth, which we quantify
using a subspace alignment measure (SAM) corresponding to
the Frobenius norm of the matrix of pairwise chordal distances
between three subspaces associated with features, graph, and
ground truth. The proposed measure is based on the principal
angles between subspaces and has both spectral and geometrical
interpretations. We showcase the relationship between the SAM
and the classification performance through the study of limiting
cases of GCNs and systematic randomizations of both features
and graph structure applied to a constructive example and
several examples of citation networks of different origins. The
analysis also reveals the relative importance of the graph and
features for classification purposes.

Index Terms— Data alignment, deep learning, graph convolu-
tional networks (GCNs), graph subspaces, principal angles.

I. INTRODUCTION

DEEP learning encompasses a broad class of machine
learning methods that use multiple layers of nonlinear

processing units in order to learn multilevel representations for
detection or classification tasks [1]–[5]. The main realizations
of deep multilayer architectures are the so-called deep neural
networks (DNNs), which correspond to artificial neural net-
works (ANNs) with multiple layers between input and output
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layers. DNNs have been shown to perform successfully in
processing a variety of signals with an underlying Euclidean or
grid-like structure, such as speech, images, and videos. Signals
with an underlying Euclidean structure usually come in the
form of multiple arrays [1] and are known for their statisti-
cal properties, such as locality, stationarity, and hierarchical
compositionality from local statistics [6], [7]. For instance,
an image can be seen as a function on Euclidean space (the
2-D plane) sampled from a grid. In this setting, the locality is
a consequence of local connections, stationarity results from
shift-invariance, and compositionality stems from the intrinsic
multiresolution structure of many images [4]. It has been
suggested that such statistical properties can be exploited by
convolutional architectures via DNNs, namely, (deep) convo-
lutional neural networks (CNNs) [8]–[10], that are based on
four main ideas: local connections, shared weights, pooling,
and multiple layers [1]. The role of the convolutional layer
in a typical CNN architecture is to detect local features from
the previous layer that are shared across the image domain,
thus largely reducing the parameters compared with traditional
fully connected feed-forward ANNs.

Although deep learning models, and in particular CNNs,
have achieved highly improved performance on data charac-
terized by an underlying Euclidean structure, many real-world
data sets do not have a natural and direct connection with the
Euclidean space. Recently, there has been interest in extending
deep learning techniques to non-Euclidean domains, such as
graphs and manifolds [4]. An archetypal example is social
networks, which can be represented as graphs with users
as nodes and edges representing social ties between them.
In biology, gene regulatory networks represent relationships
between genes encoding proteins that can up- or down-regulate
the expression of other genes. In this article, we illustrate
our results through examples stemming from another kind of
relational data with no discernible Euclidean structure, yet with
a clear graph formulation, namely, citation networks, where
nodes represent documents and an edge is established if one
document cites the other [11].

To address the challenge of extending deep learning
techniques to graph-structured data, a new class of deep
learning algorithms, broadly named graph neural networks
(GNNs), has been recently proposed [4], [12], [13]. In this
setting, each node of the graph represents a sample, which
is described by a feature vector, and we are additionally
provided with relational information between the samples
that can be formalized as a graph. GNNs are well suited to
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node (i.e., sample) classification tasks. For a recent survey of
this fast-growing field, see [14].

Generalizing convolutions to non-Euclidean domains is
not straightforward [15]. Recently, graph convolutional net-
works (GCNs) have been proposed [16] as a subclass of GNNs
with convolutional properties. The GCN architecture com-
bines the full relational information from the graph together
with the node features to accomplish the classification task,
using the ground-truth class assignment of a small subset of
nodes during the training phase. GCNs have shown improved
performance for semisupervised classification of documents
(described by their text) into topic areas, outperforming meth-
ods that rely exclusively on text information without the
use of any citation information, e.g., multilayer perceptron
(MLP) [16].

However, we would not expect such an improvement to be
universal. In some cases, the additional information provided
by the graph (i.e., the edges) might not be consistent with the
similarities between the features of the nodes. In particular,
in the case of citation graphs, it is not always the case that
documents cite other documents that are similar in content.
As we will show in the following with some illustrative data
sets, in those cases, the conflicting information provided by
the graph means that a graph-less MLP approach outperforms
GCN. Here, we explore the relative importance of the graph
with respect to the features for classification purposes and
propose a geometric measure based on subspace alignment
to explain the relative performance of GCN against different
limiting cases.

Our hypothesis is that a degree of alignment among the three
layers of information available (i.e., the features, the graph,
and the ground truth) is needed for GCN to perform well,
and any degradation in the information content leads to an
increased misalignment of the layers and worsened perfor-
mance. We will first use randomization schemes to show that
the systematic degradation of the information contained in
the graph and the features leads to a progressive worsening
of GCN performance. Second, we propose a simple spectral
alignment measure and show that this measure correlates
with the classification performance in a number of data sets:
1) a constructive example built to illustrate our work;
2) CORA, a well-known citation network benchmark;
3) AMiner, a newly constructed citation network data set; and
4) two subsets of Wikipedia: Wikipedia I, where GCN outper-
forms MLP, and Wikipedia II, where MLP outperforms GCN.

II. RELATED WORK

A. Neural Networks on Graphs

The first attempt to generalize neural networks on graphs
can be traced back to Gori et al. [17] who proposed a scheme
combining recurrent neural networks (RNNs) and random
walk models. Their method requires the repeated application
of contraction maps as propagation functions until the node
representations reach a stable fixed point. This method, how-
ever, did not attract much attention when it was proposed. With
the current surge of interest in deep learning, this work has
been reappraised in a new and modern form: [18] introduced
modern techniques for RNN training based on the original

GNN framework, whereas [19] proposed a convolution-like
propagation rule on graphs and methods for graph-level clas-
sification. Nonspectral methods have also been successfully
proposed. For example, [20] shows how diffusion-based rep-
resentations can be learned from graph-structured data and
used as the basis for node classification by introducing a
diffusion-convolution operation. Niepert et al. [21] convert
graphs locally into sequences fed into a conventional 1-D
CNN, which needs the definition of a node ordering in a
preprocessing step.

The first formulation of CNNs on graphs (GCNNs) was
proposed by Bruna et al. [22]. These researchers applied the
definition of convolutions to the spectral domain of the graph
Laplacian. While being theoretically salient, this method is
unfortunately impractical due to its computational complexity.
This drawback was addressed by subsequent studies [15].
In particular, [15] leveraged fast localized convolutions with
Chebyshev polynomials. In [16], a GCN architecture was
proposed via a first-order approximation of localized spectral
filters on graphs. In that work, Kipf and Welling considered
the task of semisupervised transductive node classification
where labels are only available for a small number of nodes.
Starting with a feature matrix X and a network adjacency
matrix A, they encoded the graph structure directly using a
neural network model f (X, A) and trained on a supervised
target loss function L computed over the subset of nodes with
known labels. Their proposed GCN was shown to achieve
improved accuracy in classification tasks on several benchmark
citation networks and a knowledge graph data set. In our
study, we examine how the properties of features and the
graph interact in the model proposed by Kipf and Welling for
semisupervised transductive node classification in citation net-
works. The architecture and propagation rules of this method
are detailed in Section II-C.

B. Spectral Graph Convolutions

We now present briefly the key insights introduced by
Bruna et al. [22] to extend CNNs to the non-Euclidean domain.
For an extensive recent review, the reader should refer to [4].

We study GCNs in the context of a classification task for
N samples. Each sample is described by a C0-dimensional
feature vector, which is conveniently arranged into the feature
matrix X ∈ RN×C0

. Each sample is also associated with the
node of a given graph G with N nodes, with edges representing
additional relational (symmetric) information. This undirected
graph is described by the adjacency matrix A ∈ RN×N . The
ground-truth assignment of each node to one of F classes is
encoded into a 0–1 membership matrix Y ∈ RN×F .

The main hurdle is the definition of a convolution operation
on a graph between a filter gw and the node features X .
This can be achieved by expressing gw onto a basis encoding
information about the graph, e.g., the adjacency matrix A or
the Laplacian L = D − A, where D = diag(A1). This real
symmetric matrix has an eigendecomposition L = U�U T ,
where U is the matrix of column eigenvectors with associated
eigenvalues collected in the diagonal matrix �. The filters can
then be expressed in the eigenbasis U of L

gw = Ugw(�)U T (1)
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with the convolution between filter and signal given by

gw � X = Ugw(�)U T X. (2)

The signal is, thus, projected onto the space of the graph,
filtered in the frequency domain, and projected back onto
the nodes.

C. Graph Convolutional Networks

A GCN is a semisupervised method, in which a small subset
of the node ground-truth labels is used in the training phase
to infer the class of unlabeled nodes. This type of learning
paradigm, where only a small amount of labeled data is
available, therefore, lies between supervised and unsupervised
learning.

Furthermore, the model architecture and, thus, the learning
depend explicitly on the structure of the network. Hence,
the addition of any new data point (i.e., a new node in the
network) will require retraining of the model. GCNs are,
therefore, an example of a transductive learning paradigm,
where the classifier cannot be generalized to data that have not
already seen. Node classification using a GCN can be seen as
a label propagation task: given a set of seed nodes with known
labels, the task is to predict which label will be assigned to
the unlabeled nodes given a certain topology and attributes.

1) Layerwise Propagation Rule and Multilayer Architec-
ture: Our study uses the multilayer GCN proposed in [16].
Given the matrix X with sample features and the (undirected)
adjacency matrix A of the graph G encoding relational infor-
mation between the samples, the propagation rule between
layers � and �+1 (of size C� and C�+1, respectively) is given
by

H �+1 = σ�
��AH �W �

�
(3)

where H � ∈ RN×C�

and H �+1 ∈ RN×C�+1
are matrices of

activation in the �th and (� + 1)th layers, respectively; σ�(·)
is the threshold activation function for layer �; the weights
connecting layers � and � + 1 are stored in the matrix W � ∈
RC�×C�+1

. Note that the input layer contains the feature matrix
H 0 ≡ X .

The graph is encoded in �A = D̃−1/2 ÃD̃−1/2, where Ã =
A + IN is the adjacency matrix of a graph with added self-
loops, IN is the identity matrix, and D̃ = diag( Ã1) is a
diagonal matrix containing the degrees of Ã. In the remainder
of this work (and to ensure comparability with the results
in [16]), we use �A as the descriptor of the graph G.

Following [16], we implement a two-layer GCN with propa-
gation rule (3) and different activation functions for each layer,
i.e., a rectified linear unit (ReLU) for the first layer and a
softmax unit for the output layer

σ 0 : ReLU(xi) = max(xi , 0) (4)

σ 1 : softmax(x)i = exp(xi)�
i exp(xi)

(5)

where x is a vector. The model then takes the simple form

Z = f (X, A) = softmax
��A ReLU

��AXW 0
�

W 1
�

(6)

Fig. 1. Schematic of GCN used. The graph �A is applied to the input of
each layer � before it is funneled into the input of layer � + 1. The process
is repeated until the output has dimension N × F and produces a predicted
class assignment. During the training phase, the predicted assignments are
compared against a subset of values YL of the ground truth.

where the softmax function is applied rowwise and the ReLU
is applied elementwise. Note that there is only one hidden
layer with C1 units. Hence, W 0 ∈ RC0×C1

maps the input
with C0 features to the hidden layer, and W 1 ∈ RC1×C2

maps
these hidden units to the output layer with C2 = F units,
corresponding to the number of classes of the ground truth. In
this semisupervised multiclass classification, the cross-entropy
error over all labeled instances is evaluated as follows:

L = −
�
l∈YL

F�
f =1

Yl f ln Zl f (7)

where YL is the set of nodes that have labels. The weights
of the neural network (W 0 and W 1) are trained using gradient
descent to minimize the loss L. A visual summary of the GCN
architecture is shown in Fig. 1. The reader is referred to [16]
for details and in-depth analysis. Although GCN was intro-
duced as a simplified form of spectral-based GNNs, it shows
a natural connection with spatial-based GNNs, in which graph
convolutions are defined by information propagation. Hence,
our study of the alignment of graph and features is related
more widely to graph-feature correlations, such as spatial
autocorrelations measured with, e.g., Moran’s and Geary’s
indices [23], [24] that capture how the features of nodes
influence each other via network structure.

III. METHODS

A. Randomization Strategies

To test the hypothesis that a degree of alignment across
information layers is crucial for a good classification perfor-
mance of GCN, we gradually randomize the node features,
the node connectivity, or both. For the randomization to give
a meaningful notion of alignment, at least one ingredient needs
to be kept constant. Since we focus on the alignment of graphs
and features, we keep the ground-truth constant.

1) Randomization of the Graph: The edges of the graph
are randomized by rewiring a percentage p�A of edge stubs
(i.e., “half-edges”) under the constraint that the degree dis-
tribution remains unchanged. This randomization strategy is
described in Algorithm 1, which is based on the configuration
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Algorithm 1: Randomization of the Graph
Input: A graph G(V , E), where V is the set of nodes

and E is the set of edges, and a randomization
percentage 0 ≤ p�A ≤ 100.

Output: A randomized graph G p�A (V , E �)

1.Choose a random subset of edges Er from E with
|Er | = �|E | × p�A/100�, and denote the unrandomized
edges in E as Eu .

2. Obtain the degree sequence of nodes from Er , and
build a stub list ls based on the degree sequence.

3. Obtain a randomized stub list l �s by shuffling ls , and
randomized edges E �

r by connecting the stubs in the
corresponding positions of the two stub lists ls and l �s .

4. Compute Eu ∪ E �
r , remove multiedges and self-loops,

and obtain the final edge set E’.

5. Generate randomized graph G p�A(V , E �) from node set
V and edge set E �.

model [25]. Once a randomized realization of the graph is
produced, the corresponding �A is computed.

2) Randomization of the Features: The features were ran-
domized by swapping feature vectors between a percentage pX

of randomly chosen nodes following the procedure described
in Algorithm 2.

Algorithm 2: Randomization of the Features

Input: A feature matrix X ∈ RN×C0
, and a

randomization percentage 0 ≤ pX ≤ 100.
Output: A randomized feature matrix X pX ∈ RN×C0

1. Choose at random Nr rows from X , where
Nr = �N pX/100�.

2. Swap randomly the Nr rows to obtain X pX .

A fundamental difference between the two randomization
schemes is that the graph randomization alters its spectral
properties as it gradually destroys the graph structure, whereas
the randomization of the features preserves its spectral proper-
ties in the principal component analysis (PCA) sense, i.e., the
principal values are the same, but the loadings on the com-
ponents are swapped. Hence, the feature randomization still
alters the classification performance because the features are
reassigned to nodes that have a different environment, thereby
changing the result of the convolution operation defined by
the H � activation matrices (3).

B. Limiting Cases

To interrogate the role that the graph plays in the classifica-
tion performance of a GCN, it is instructive to consider three
limiting cases.

1) No Graph: A = 00T . If we remove all the edges in
the graph, the classifier becomes equivalent to an MLP,
a classic feed-forward ANN. The classification is based

solely on the information contained in the features, as no
graph structure is present to guide the label propagation.

2) Complete Graph: A = 11T − IN . In this case, the mixing
of features is immediate and homogeneous, correspond-
ing to a mean-field approximation of the information
contained in the features.

3) No Features: X = IN . In this case, the label propagation
and assignment are purely based on graph topology.

An illustration of these limiting cases can be found in the top
row of Table II.

C. Spectral Alignment Measure

In order to quantify the alignment between the features,
the graph, and the ground truth, we propose a measure based
on the chordal distance between subspaces, as follows.

1) Chordal Distance Between Two Subspaces: Recent work
by Ye and Lim [26] has shown that the distance between two
subspaces of different dimension in R

n is necessarily defined
in terms of their principal angles.

Let A and B be two subspaces of the ambient space R
n

with dimensions α and β, respectively, with α ≤ β < n. The
principal angles between A and B denoted 0≤θ1 ≤ θ2 ≤ · · · ≤
θα ≤ (π/2) are defined recursively as follows [27], [28]:

θ1 = min
a1∈A,b1∈B

arccos

� |aT
1 b1|

	a1		b1	
�

θ j = min
a j ∈A,b j ∈B

a j ⊥a1,...,a j−1
b j ⊥b1,...,b j−1

arccos

	 |aT
j b j |

	a j		b j	



, j = 2, . . . , α.

If the minimal principal angle is small, then the two subspaces
are nearly linearly dependent, i.e., almost perfectly aligned.
A numerically stable algorithm that computes the canonical
correlations (i.e., the cosine of the principal angles) between
subspaces is given in Algorithm 3.

Algorithm 3: Principal Angles [27], [28]
Input: matrices An×α and Bn×β with α ≤ β < n.
Output: cosines of the principal angles

θ1 ≤ θ2 ≤ . . . ≤ θα between R(A) and R(B),
the column spaces of A and B .

1. Find orthonormal bases QA and QB for A and B
using the QR decomposition: QT

AQA = QT
BQB = I ;

R(QA) = R(A), R(QB) = R(B).

2. Compute the singular value decomposition (SVD):
QT

AQB = UCV T .

3. Extract the diagonal elements of C: Cii = cos θi ,
to obtain the canonical correlations {cos θ1, . . . , cos θα}.

The principal angles are the basic ingredient of a number
of the well-defined Grassmannian distances between sub-
spaces [26]. Here, we use the chordal distance given by

d(A,B) =
��� α�

j=1

sin2 θ j . (8)
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Fig. 2. Method to determine relevant subspaces [see (11)]. Using the
constructive example, we illustrate the subspaces representing features, graph,
and ground truth. The feature and ground-truth matrices are decomposed via
PCA, and the graph matrix is similarly eigendecomposed. Fixing k∗

Y = F ,
we optimize (11) to find the dimensions k∗

X and k∗�A that maximize the
difference between the area of the blue triangle, which reflects the alignment
of the three subspaces (X, �A, Y ) of the original data, and the area of the red
triangle, which corresponds to the alignment of the subspaces (X100, �A100, Y )
of the fully randomized data. The edges of the triangles correspond to the
pairwise chordal distances (e.g., the base of the blue triangle corresponds to
d(X, �A)).

The larger the chordal distance d(A,B), the worse the
alignment between the subspaces A and B.

We remark that the last inequality in α ≤ β < n is strict.
If a subspace spans the whole ambient space (i.e., β = n),
then its distance to all other strict subspaces of R

n is trivially
zero, as it is always possible to find a rotation that aligns the
strict subspace with the whole space.

2) Alignment Metric: Our task involves establishing the
alignment between three subspaces associated with the fea-
tures X , the graph �A, and the ground truth Y . To do so,
we consider the distance matrix containing all the pairwise
chordal distances

D
�
X, �A, Y

� =
⎡⎣ 0 d

�
X, �A�

d(X, Y )
d
�
X, �A�

0 d
��A, Y

�
d(X, Y ) d

��A, Y
�

0

⎤⎦ (9)

and we take the Frobenius norm [28] of this matrix D as our
subspace alignment measure (SAM)

S�
X, �A, Y

� = 	D
�
X, �A, Y

�	F =
��� 3�

i=1

3�
j=1

D2
i j . (10)

The larger 	D	F is, the worse the alignment between the
three subspaces. This alignment measure has a geometric
interpretation related to the area of the triangle with sides
d(X, �A), d(X, Y ), d(�A, Y ) (the smaller blue shaded triangle
in Fig. 2).

3) Determining the Dimension of the Subspaces: The fea-
ture, graph, and ground-truth matrices (X, �A, Y ) are associated
with subspaces of the ambient space R

N , where N is the
number of nodes (or samples). These subspaces are spanned by
the eigenvectors of �A, the principal components of the feature
matrix X , and the principal components of the ground-truth
matrix Y , respectively [29]. The dimension of the graph
subspace is N ; the dimension of the feature subspace is the
number of features C0 < N (in our examples); and the
dimension of the ground-truth subspace is the number of
classes F < C0 < N .

The pairwise chordal distances Di j in (9) are computed from
a number of minimal angles, corresponding to the smaller
of the two dimensions of the subspaces being compared.
Hence, the dimensions of the subspaces (kX , k�A, kY ) need to
be defined to compute the distance matrix D. Here, we are
interested in finding low dimensional subspaces of features,
graph, and ground truth with dimensions (k∗

X , k∗�A, k∗
Y ) such

that they provide maximum discriminatory power between the
original problem and the fully randomized (null) model. To
do this, we propose the following criterion:

k∗
Y = F�

k∗
X , k∗�A� = max

kX ,k�A
�	D

�
X100, �A100, Y

�	F − 	D
�
X, �A, Y

�	F
�
.

(11)

We choose k∗
Y equal to the number of ground-truth classes

since they are nonoverlapping [29]. Our optimization selects
k∗

X and k∗�A such that the difference in alignment between the
original problem with no randomization ( pX = p�A = 0) and
an ensemble of 100 fully randomized (feature and graph, pX =
p�A = 100) problems is maximized (see the Supplementary
Material for details on the optimization scheme). This criterion
maximizes the range of values that ||D||F can take, thus aug-
menting the discriminatory power of the alignment measure
when finding the alignment between both data sources and
the ground truth, beyond what is expected purely at random.
Importantly, the reduced dimension of features and graphs are
found simultaneously since our objective is to quantify the
alignment (or amount of shared information) contained in the
three subspaces. Our criterion effectively amounts to finding
the dimensions of the subspaces that maximize a difference
in the surfaces of the larger (red) and smaller (blue) shaded
triangles in Fig. 2.

We provide the code to compute our proposed alignment
measure at https://github.com/haczqyf/gcn-data-alignment.

IV. EXPERIMENTS

A. Data Sets

Relevant statistics of the data sets, including number of
nodes and edges, dimension of feature vectors, and number
of ground-truth classes, are reported in Table I.

1) Constructive Example: To illustrate the alignment mea-
sure in a controlled setting, we build a constructive example,
consisting of 1000 nodes assigned to ten planted communities
C1, . . . , C10 of equal size. We then generate both a feature
matrix and a graph matrix whose structures are aligned with
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TABLE I

SOME STATISTICS OF THE DATA SETS IN OUR STUDY.

the ground-truth assignment matrix. The graph structure is
generated using a stochastic block model that reproduces
the ground-truth structure with some noise: two nodes are
connected with a probability pin = 0.07 if they belong to
the same community Ci and pout = 0.007 otherwise. The
feature matrix is constructed in a similar way. The feature
vectors are 500-dimensional and binary, i.e., a node either
possesses a feature or it does not. Each ground-truth cluster is
associated with 50 features that are present with a probability
of pin = 0.07. Each node also has a probability pout = 0.007
of possessing each feature characterizing other clusters. Using
the same stochastic block structure for both features and graph
ensures that they are maximally aligned with the ground truth.
This constructive example is then randomized in a controlled
way to detect the loss of alignment and the impact this loss
of alignment has on the classification performance.

2) CORA: The CORA data set is a benchmark for
classification algorithms using text and citation data.1 Each
article is labeled as belonging to one of seven categories
(Case_Based, Genetic_Algorithms, Neural_Networks,
Probabilistic_Methods, Reinforcement_Learning, Rule_
Learning, and Theory), which gives the ground truth Y .
The text of each article is described by a 0/1 vector
indicating the absence/presence of words in a dictionary
of 1433 unique words, the dimension of the feature space.
The feature matrix X is made from these word vectors. We
extracted the largest connected component of this citation
graph (undirected) to form the graph adjacency matrix A.

3) AMiner: For additional comparisons, we produced a
new data set with similar characteristics to CORA from the
academic citation site AMiner. AMiner is a popular scholarly
social network service for research purposes only [30], which
provides an open database2 with more than ten data sets
encompassing researchers, conferences, and publication data.
Among these, the academic social network3 is the largest
one and includes information on articles, citations, authors,
and scientific collaborations. In 2012, the Chinese Computer
Federation (CCF) released a catalog including ten subfields
of computer science. Using the AMiner academic social
network, Qian et al. [31] extracted 102 887 articles published
from 2010 to 2012 and mapped each article with a unique
subfield of computer science according to the publication
venue. Here, we use these assigned categories as the ground
truth for a classification task. Using all the articles in [31]
that have both abstract and references, we created a data set
of similar size to CORA. We extracted the largest connected
component from the citation network of all articles in seven

1https://linqs.soe.ucsc.edu/data
2https://aminer.org/data
3https://aminer.org/aminernetwork

subfields (computer systems/high-performance computing,
computer networks, network/information security, software
engineering/software/programming language, databases/data
mining/information retrieval, theoretical computer science,
and computer graphics/multimedia) from 2010 to 2011. The
resulting AMiner citation network consists of 2072 articles
with 4299 edges. Just as with CORA, we treat the citations
as undirected edges and obtain an adjacency matrix A.
We further extracted the most frequent 500 stemmed terms
from the corpus of abstracts of articles and constructed the
feature matrix X for AMiner using bag-of-words.

4) Wikipedia: As a contrasting example, we produced three
data sets from the English Wikipedia. Wikipedia provides an
interlinked corpus of documents (articles) in different fields
that “cite” each other via hyperlinks. We first constructed a
large corpus of articles, consisting of a mixture of popular
and random pages, so as to obtain a balanced data set.
We retrieved the 5000 most accessed articles during the
week before the construction of the data set (July 2017) and
additional 20 000 documents at random using the Wikipedia
built-in random function.4 The text and subcategories of each
document, together with the names of documents connected to
it, were obtained using the Python library Wikipedia.5 A few
documents (e.g., those with no subcategories) were filtered
out during this process. We constructed the citation network
of the documents retrieved and extracted the largest con-
nected component. The resulting citation network contained
20 525 nodes and 215 056 edges. The text content of each
document was converted into a bag-of-words representation
based on the 100 most frequent words. To establish the
ground truth, we used 12 categories from the application
programming interface (API) (People, Geography, Culture,
Society, History, Nature, Sports, Technology, Health, Religion,
Mathematics, and Philosophy) and assigned each document to
one of them. As part of our investigation, we split this large
Wikipedia data set into two smaller subsets of nonoverlapping
categories: Wikipedia I, consisting of Health, Mathematics,
Nature, Sports, and Technology; and Wikipedia II, with the
categories Culture, Geography, History, Society, and People.

B. GCN Architecture, Hyperparameters, and Implementation

We used the GCN architecture [16] and implementation6

provided by Kipf and Welling [16] and followed closely their
experimental setup to train and test the GCN on our data sets.
We used a two-layer GCN as described in Section II-C with
the maximum number of training iterations (epochs) set to
400 [32], a learning rate of 0.01, and early stopping with
a window size of 100, i.e., training stops if the validation
loss does not decrease for 100 consecutive epochs. Other
hyperparameters used were: 1) dropout rate: 0.5; 2) L2 regular-
ization: 5 × 10−4; and 3) number of hidden units: 16. We ini-
tialized the weights, as described in [33], and, accordingly,
row-normalized the input feature vectors. For the training,
validation, and test of the GCN, we used the following split:

4https://en.wikipedia.org/wiki/Wikipedia:Random
5https://github.com/goldsmith/Wikipedia
6https://github.com/tkipf/gcn
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TABLE II

CLASSIFICATION ACCURACY OF GCN AND LIMITING CASES FOR OUR
DATA SETS. THE BEST PERFORMANCE IS INDICATED IN BOLD. ERROR

BARS ARE EVALUATED OVER 100 RUNS. THE GCN WITH

ORIGINAL DATA PERFORMS BEST IN MOST CASES BUT

IS OUTPERFORMED BY MLP IN THE FULL WIKIPEDIA
DATA SET AND ITS SUBSET WIKIPEDIA II

1) 5% of instances as training set; 2) 10% as validation set; and
3) the remaining 85% as test set. We used this split for all
data sets with exception of the full Wikipedia data set, where
we used: 1) 3.5% of instances as training set; 2) 11.5% as
validation set; and 3) the remaining 85% as test set. This mod-
ification of the split was necessary to ensure that the instances
in the training set were evenly distributed across categories.

V. RESULTS

The GCN performance is evaluated using the standard
classification accuracy defined as the proportion of nodes
correctly classified in the test set.

A. GCN: Original Graph Versus Limiting Cases

For each data set in Table I, we trained and tested a GCN
with the original graph and features matrices, and GCN models
under the three limiting cases described in Section III-B. We
computed the average accuracy of 100 runs with random
weight initializations (see Table II).

The GCN using all the information available in the fea-
tures and the graph outperforms MLP (the no graph limit)
except in the case of the large Wikipedia set. Hence, using
the additional information contained in the graph does not
necessarily increase the performance of GCN. To investigate
this issue further, we split the Wikipedia data set into two
subsets: Wikipedia I, with articles in topics that tend to
be more self-referential (e.g., Mathematics or Technology),
and Wikipedia II, containing pages in areas that are less
self-contained (e.g., Culture or Society). We observed that
GCN outperforms MLP for Wikipedia I, but the opposite
is still true for Wikipedia II. Finally, we also observe that
the performance of “No features” is always lower than the
performance of GCN, and as expected, the performance of
“Complete graph” (i.e., mean field) is very low and close to
pure chance (i.e., ∼1/F).

B. Performance of GCN Under Randomization

The abovementioned results lead us to pose the hypothesis
that a degree of synergy between features, graph, and ground

Fig. 3. Degradation of classification performance as a function of ran-
domization. Each panel shows the degradation of the classification accuracy
as a function of the randomization of graph, features, and both, for a
different data set. Error bars are evaluated over 100 realizations: for zero
percent randomization, we report 100 runs with random weight initializations;
and for the rest, we report 1 run with random weight initializations for
100 random realizations. The horizontal lines correspond to the limiting cases
in Table II. The full Wikipedia data set was not analyzed here since the
eigendecomposition of �A needed to obtain k∗

X , k∗�A is computationally intensive.

truth is needed for GCN to perform well. To investigate
this hypothesis, we use the randomization schemes described
in Section III-A to systematically degrade the information
content of the graph and/or the features in our data sets. Fig. 3
presents the performance of the GCN as a function of the
percent of randomization of the graph structure, the features,
or both. As expected, the accuracy decreases for all data sets
as the information contained in the graph, features, or both
is scrambled, yet with differences in the decay rate of each of
the ingredients for the different examples.

Note that the chance-level performance of the “Complete
graph” (mean field) limiting case is achieved only when
both graph and features are fully randomized, whereas the
accuracy of the two other limiting cases (“No graph—MLP,”
“No features”) is reached around the half-point (∼50%) of
randomization of the graph or of the features, respectively.
This indicates that using the scrambled information above a
certain degree of randomization becomes more detrimental to
the classification performance than simply ignoring it.

C. Relating GCN Performance and Subspace Alignment

We tested whether the degradation of GCN performance is
linked to the increased misalignment of features, graph, and
ground truth given by the SAM

S∗�X, �A, Y
� = 	D

�
X, �A, Y ; k∗

X , k∗�A, k∗
Y

�	F (12)

which corresponds to (10) computed with the dimensions
(k∗

X , k∗�A, k∗
Y ) obtained using (11) (see Table III and the

Supplementary Material for the optimization scheme used).
Fig. 4 shows that the GCN accuracy is clearly (anti)correlated
with the subspace alignment distance (12) in all our examples
(mean correlation = −0.92). As we randomize the graph
and/or features, the subspace misalignment increases, and
the GCN performance decreases. In addition to the Chordal
distance, [26] studies other subspace distances. While all
the distances can be expressed in terms of the principal
angles θ j , some rely on all the angles whereas others only use
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TABLE III

DIMENSIONS OF THE THREE SUBSPACES OBTAINED
ACCORDING TO (11) FOR OUR DATA SETS

Fig. 4. Classification performance versus the SAM. Each panel shows the
accuracy of GCN versus the SAM (12) for all the runs presented in Fig. 3.
Error bars are evaluated over 100 randomizations.

the maximum principal angle. We obtain similar results for
distances that use all the principal angles (e.g., Chordal and
Grassmann), but we find that extremal distances based on the
maximum principal angle (e.g., the Projection distance) do
not correlate as well with GCN performance. This highlights
the importance of the information captured by all principal
angles to quantify the alignment between subspaces. For
results based on the Grassmann and Projection distances, see
Appendix (Section III) in the Supplementary Material.

VI. DISCUSSION

Our first set of experiments (see Table II) reflects the varying
amount of information that GCN can extract from features,
graph, and their combination, for the purpose of classification.
For a classifier to perform well, it is necessary to find (possibly
nonlinear) combinations of features that map differentially and
distinctively onto the categories of the ground truth. The larger
the difference (or distance on the projected space) between the
samples of each category, the easier it is to “separate” them,
and the better the classifier. In the MLP setting, for instance,
the weights between layers (W �) are trained to maximize
this separation. As seen by the different accuracies in the
“No graph” column (see Table II), the features of each example
contain a variable amount of information that is mappable on
its ground truth. Similar reasoning applies to classification
based on graph information alone, but, in this case, it is
the eigenvectors of �A that needs to be combined to produce
distinguishing features between the categories in the ground
truth (e.g., if the graph substructures across scales [34] do
not map onto the separation lines of the ground-truth cate-
gories, then the classification performance based on the graph
will deteriorate). The accuracy in the “No features” column
indicates that some of the graphs contain more congruent
information with the ground truth than others. Therefore,

the “No graph” and “No features” limiting cases inform about
the relative congruence of each type of information with
respect to the ground truth. One can then conjecture that,
if the performance of the “No features” case is higher than
the “No graph” case, GCN will yield better results than MLP.

In addition, our numerics show that, although combining
both sources of information generally leads to improved classi-
fication performance (“GCN original” column in Table II), this
is not always necessarily the case. Indeed, for the Wikipedia
and Wikipedia II examples, the classification performance of
the MLP (“No graph”), which is agnostic to relationships
between samples, is better than when the additional layer of
relational information about the samples (i.e., the graph) is
incorporated via the GCN architecture. This suggests that,
for improved GCN classification, the information contained
in features and graphs needs to be constructively aligned
with the ground truth. This phenomenon can be intuitively
understood as follows. In the absence of a graph (i.e., the MLP
setting), the training of the layer weights is done independently
over the samples, without assuming any relationship between
them. In GCN, on the other hand, the role of the graph is
to guide the training of the weights by averaging the features
of a node with those of its graph neighbors. The underlying
assumption is that the relationships represented by the graph
should be consistent with the information of the features,
i.e., the features of nodes that are graph neighbors are expected
to be more similar than otherwise; hence, the training process
is biased toward convolving the diffusing information on the
graph to extract improved feature descriptions for the classifier.
However, if feature similarities and graph neighborhoods (or
more generally, graph communities [34]) are not congruent,
this graph-based averaging during the training is not beneficial.

To explore this issue in a controlled fashion, our second
set of experiments (see Fig. 3) studied the degradation of
the classification performance induced by the systematic ran-
domization of graph structure and/or features. The erosion of
information is not uniform across our examples, reflecting
the relative salience of each of the components (features
and graph) for classification. Note that the GCN is able to
leverage the information present in any of the two components
and is only degraded to chance-level performance when both
graph and features are fully randomized. Interestingly, this
fully randomized (chance-level) performance coincides with
that of the “Complete graph” (or mean field) limiting case,
where the classifier is trained on features averaged over all the
samples, thus leading to a uniform representation that has zero
discriminating power when it comes to category assignment.

These results suggest that a degree of constructive alignment
between the matrices of features, graph, and ground truth
(X, �A, Y ) is necessary for GCN to operate successfully beyond
standard classifiers. To capture this idea, we proposed a simple
SAM (12) that uses the minimal principal angles to capture
the consistency of pairwise projections between subspaces.
Fig. 4 shows that SAM correlates well with the classification
performance and captures the monotonic dependence remark-
ably, given that SAM is a simple linear measure being applied
to the outcome of a highly nonlinear, optimized system. The
results are consistent for other versions of GCN. In particular,
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in the Supplementary Material (Section II), we show that the
alignment measure correlates well with the performance of the
recently proposed simple graph convolution (SGC) [35].

The alignment measure can be used to evaluate the relative
importance of features and graphs for classification without
explicitly running the GCN, by comparing the SAM under
full randomization of features against the SAM under full ran-
domization of the graph. If S∗(X100, �A, Y ) > S∗(X, �A100, Y ),
the features play a more important role in GCN classification.
Conversely, if S∗(X100, �A, Y ) < S∗(X, �A100, Y ), the graph is
more important in GCN classification. While we have focused
here on node classification, it would be interesting in future
work to extend our measure to other tasks, such as graph
classification, link prediction, and regression.

VII. CONCLUSION

In this article, we have introduced SAM (12), a measure
that quantifies the consistency between the feature and graph
ingredients of data sets, and we showed that it correlates well
with the classification performance of GCNs. Our experiments
show that a degree of alignment is needed for a GCN approach
to be beneficial, and using a GCN can actually be detrimental
to the classification performance if the feature and graph
subspaces associated with the data are not constructively
aligned (e.g., Wikipedia and Wikipedia II). More generally,
the SAM has potentially a wider range of applications in
the quantification of data alignment including, among others:
quantifying the alignment of different graphs associated with,
or obtained from, particular data sets; evaluating the quality
of classifications found using unsupervised methods; and aid-
ing in choosing the classifier architecture most advantageous
computationally for a particular data set.

Our approach has a number of limitations that could be
addressed in future work. First, it contains two parameters (i.e.,
the dimensions of the subspaces, k∗

X and k∗�A) that need to be
tuned through a computational search. Second, the alignment
is not directly comparable across data sets since the subspace
dimensions are adjusted for each data set. To facilitate com-
parisons across data sets, normalized versions of the alignment
measure will be the object of future work. Third, the current
measure is not suitable for very large data sets as the eigende-
composition of large matrices is computationally demanding.
For very large data sets, approximations (e.g., using the
Lanczos algorithm to explore only leading eigenvectors) might
be necessary to optimize the subspace dimensions.
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